Evaluation of the acoustic performance and surface characteristics of porous friction courses in urban environments

Authors

  • Carla Marília Cavalcante Alecrim Federal University of Ceará, Ceará – Brazil https://orcid.org/0000-0001-8534-5187
  • Verônica Teixeira Franco Castelo Branco Federal University of Ceará, Ceará – Brazil
  • Nara Gabriela de Mesquita Peixoto Federal University of Ceará, Ceará – Brazil
  • Alessandro Alves Federal University of Mato Grosso do Sul, Mato Grosso do Sul – Brasil
  • Gleidson Martins Pinheiro Federal University of Ceará, Ceará – Brazil

DOI:

https://doi.org/10.14295/transportes.v30i1.2581

Keywords:

Porous Friction Courses, Tire-pavement noise, Texture, Urban roads

Abstract

Porous Friction Courses (PFC) are used, among other places, on highways or runways to promote functional improvements to the pavement surface. In Fortaleza, PFCs are used in urban roads. The aim of this paper is to evaluate the acoustic and surface performance of PFCs in these types of roads. In order to achieve this purpose, acoustic tests (controlled pass-by method) were performed on roads where PFCs and dense Asphalt Concrete (AC) were used as wearing courses. Traditional micro and macrotexture tests were performed and, in addition, the Close-Range Photogrammetry (CRP) technique was used to obtain surface parameters. PFCs were found to be efficient in reducing noise in the urban environment (up to 5.6 dB (A)). The micro and macrotextures for PFCs were similar to those of a conventional AC. The CRP technique allowed the obtention of parameters that better characterize negative texture surfaces, which is the case of PFCs.

Downloads

Download data is not yet available.

References

Alves, A. (2019) Comportamento Mecânico, Funcional e Ambiental de Misturas Asfálticas Porosas. Tese (Doutorado). Programa de Pós-Graduação em Engenharia Civil, Universidade Federal de Santa Maria. Santa Maria, RS.

ASTM E303-93 (2018) Standard Test Method for Measuring Surface Frictional Properties Using the British Pendulum Tester. West Conshohocken, PA: American Society for Testing and Materials.

ASTM E965-15 (2019) Standard Test Method for Measuring Pavement Macrotexture Depth Using a Volumetric Technique. West Conshohocken, PA: American Society for Testing and Materials.

ABNT NBR 10151 (2000) Acústica - Avaliação do Ruído em Áreas Habitadas, Visando o Conforto da Comunidade - Procedimento. Rio de Janeiro, RJ : Associação Brasileira de Normas Técnicas.

AFNOR NF S31-119-2 (2000) Acoustique – Caractérisation in Situ des Qualities Acoustiques des Revêtements de Chausses – Mesurages Acoustiques au Passage – Partie 2: Procédure Véhicule Maîtrisé. Paris: Association Française De Normalisation.

Ceratti, J.A.P.; L.B. Bernucci e J.B. Soares (2015) Utilização de Ligantes Asfálticos em Serviços de Pavimentação (1ª ed.). Rio de Janeiro: ABEDA.

Costa, S.L.; V.T.F. Castelo Branco e E. F. Freitas (2017) ‘Avaliação da Aderência Pneu-Pavimento para Diferentes Tipos de Pa-vimentos Utilizando o International Friction Index (IFI)’. In Anais do XXXI Congresso de Pesquisa e Ensino em Transportes (Recife, PE). Rio de Janeiro: ANPET, p. 1205-1216.

DNIT (2006) Manual de Restauração de Pavimentos Asfálticos (2ª Ed.). Rio de Janeiro, RJ: Departamento Nacional de Infraes-trutura de Transportes.

EBoDE (Environmental Burden of Disease in Europe) (2010) Ranking of Environmental Stressors by Health Impact in Europe (EBoDE pilot). Disponível em: <http://en.opasnet.org/w/Ebode> (Acesso em 22/12/2021).

FEHRL (Forum of European National Highway Research Laboratories) (2006) FEHRL Report 2006/02: Guidance Manual for the Implementation of Low-Noise Road Surfaces. Bruxelas, Bélgica: Transportation Research Laboratory.

Flintsch, G.W.; K.K. McGhee; E.L. Izeppi e S. Najafi (2012) The Little Book of Tire Pavement Friction (Version 1.0). Blacksburg, VA: Virginia Tech Transportation Institute. Disponível em: <https://secure.hosting.vt.edu/www.apps.vtti.vt.edu/1-pagers/CSTI_Flintsch/The%20Little%20Book%20of%20Tire%20Pavement%20Friction.pdf> (Acesso em 22/12/2021).

Gibbs, D.; R. Iwasaki; R. Bernhard; J. Bledsoe; D. Carlson; C. Corbisier; K. Fults; T. Hearne Jr; K. McMullen; D. Newcomb; J. Rob-erts; J. Rochat; L. Scofield e M. Swanlund (2005) Report number FHWA-PL-05-011: Quiet Pavement Systems in Europe. Wa-shington, D.C.: U.S. Department of Transportation.

Gurjão, N.O. (2020) Análise do Desempenho da Camada Porosa de Atrito por Meio dos Ensaios da Mancha de Areia e Permeabili-dade. Trabalho de Conclusão de Curso. Graduação em Engenharia Civil, Centro Universitário Christus. Fortaleza, CE.

Hanson, D.I. e R. S. James (2004) Report No. CDOT-DTD-R-2004-5: Colorado DOT Tire/Pavement Noise Study. Denver, CO: Colorado Department of Transportation.

ISO 25178-2 (2012) Geometrical Product Specifications (GPS) — Surface Texture: Areal - Part 2: Terms, Definitions and Surface Texture Parameters. Genebra: International Organization for Standardization.

Knabben, R.M. (2012) Estudo do Ruído Pneu Pavimento e da Absorção Sonora em Diferentes Revestimentos de Pavimento. Dis-sertação (mestrado). Programa de Pós-Graduação em Engenharia Civil, Universidade Federal de Santa Catarina. Floria-nópolis, SC.

Knabben, R.M.; G. Trichês; E.F. Vergara; S.N.Y. Gerges e W. van Keulen (2019) ‘Characterization of Tire-Road Noise from Bra-zilian Roads Using the CPX Trailer Method’. Applied Acoustics, v. 151, p. 206–214. DOI: 10.1016/j.apacoust.2019.03.013.

Kogbara, R.B.; E.A. Masad; E. Kassem; A. Scarpas e K. Anupam (2016) ‘A State-of-the-Art Review of Parameters Influencing Measurement and Modeling of Skid Resistance of Asphalt Pavements’. Construction and Building Materials, v. 114, p. 602–617. DOI: 10.1016/j.conbuildmat.2016.04.002.

Kogbara, R.B.; E.A. Masad; K. Anupam e A. Scarpas (2018) ‘Griptester measurements and texture-friction relationship’ in Masad, E.; A. Bhasin; T. Scarpas; I. Menapace e A. Kumar (eds.) Advances in Materials and Pavement Performance Prediction - Proceedings of the International AM3P Conference. London: CRC Press / Balkema - Taylor & Francis Group, p. 287-291. DOI: 10.1201/9780429457791.

Maia, R.S. (2020) Contributions to the Tire-Pavement Friction Characterization from the Traffic Safety Perspective. Dissertação (mestrado). Programa de Pós-Graduação em Engenharia de Transportes, Universidade Federal do Ceará. Fortaleza, CE.

McQuaid, G.; P. Millar e D. Woodward (2015) ‘Use of 3D Modeling to Assess Pothole Growth’ in Nikolaides, A.F. (ed.) Bitumi-nous Mixtures and Pavements VI: Proceedings of the 6th International Conference on Bituminous Mixtures and Pavements. 1st ed. London: Taylor & Francis Group, p. 161–166. DOI: 10.1201/B18538-26.

Medeiros, M.S.; B.S. Underwood; C. Castorena; T. Rupnow e M. Rawls (2016) ‘3D Measurement of Pavement Macrotexture Using Digital Stereoscopic Vision’. In Transportation Research Board 95th Annual Meeting. Washington, DC.

Oliveira, F.H.L.; A.E. Arantes e P.S. Fontenele (2019) Análise da Macrotextura de Camada Porosa de Atrito em Serviço por Processamento Digital de Imagens. In Anais do XXXIII Congresso de Pesquisa e Ensino em Transportes (Balneário Camboriú, SC). Rio de Janeiro: ANPET, p. 1363-1372.

PIARC (1987) Technical Committee Report on Surface Characteristics. In Permanent International Association of Road Congress (PIARC) XVIII World Road Congress. Bruxelas, Bélgica: World Road Association.

PIARC (World Road Association) (2013) Report of the Technical Committee D.2 – Road Pavements: Quiet Pavement Technologies. Disponível em: <https://www.piarc.org/ressources/publications/7/19692,2013R10-EN.pdf>. (Acesso em 22/12/2021).

Pomoni, M.; C. Plati; A. Loizos e G. Yannis (2020) ‘Investigation of Pavement Skid Resistance and Macrotexture on a Long-Term Basis’. International Journal of Pavement Engineering, p. 1-10. DOI: 10.1080/10298436.2020.1788029.

PREFEITURA MUNICIPAL DE FORTALEZA (PMF) (2018) Prefeitura de Fortaleza realiza obras de recapeamento asfáltico na Av. Senador Virgílio Távora <https://www.fortaleza.ce.gov.br/noticias/prefeitura-de-fortaleza-realiza-obras-de-recapeamento-asfaltico-na-av-senador-virgilio-tavora> (Acesso em 22/12/2021).

Sandberg, U. (1987) ‘Road traffic noise-The influence of the road surface and its characterization’. Applied Acoustics, v. 21, n. 2, p. 97–118.

Specht, L.P.; S.C. Callai; O.A. Khatchatourian e R. Kohler (2009) ‘Avaliação do Ruído através do SPBI (Statistical Pass-By Index) em Diferentes Pavimentos’. Rem: Revista Escola de Minas, v. 62, n. 4, p. 439–445. DOI: 10.1590/S0370- 44672009000400005.

Strufaldi, E.G.B.; L.L.B. Bernucci; M. Aps; F. Vittorino e D. R. Souza (2010) Traffic Noise Reduction Using Porous Asphalt Course as an Overlay of a Portland Cement Concrete Pavement in Sao Paulo, Brazil. In Proceedings of 39th International Congress on Noise Control Engineering, INTER-NOISE 2010. Lisboa.

Vianna, K.M.P. (2014) Poluição Sonora no Município de São Paulo: Avaliação do Ruído e o Impacto da Exposiçao na Saúde da População. Tese (Doutorado). Programa de Pós-Graduação em Saúde Pública, Universidade de São Paulo. São Paulo, SP.

Woodward, D.; P. Millar e G. Mcquaid (2014) ‘Use of 3D Modelling Techniques to Better Understand Road Surface Textures’. In 4th International Safer Roads Conference, Cheltenham, UK.

WHO (2018) Environmental Noise Guidelines for the European Region. Copenhagen, Denmark: World Health Organization Regional Office for Europe. Disponível em: <https://www.euro.who.int/en/health-topics/environment-and-health/noise/publications/2018/environmental-noise-guidelines-for-the-european-region-2018> (Acesso em 22/12/2021).

Published

2022-04-26

How to Cite

Cavalcante Alecrim, C. M. ., Teixeira Franco Castelo Branco, V. ., de Mesquita Peixoto, N. G. ., Alves, A., & Martins Pinheiro, G. . (2022). Evaluation of the acoustic performance and surface characteristics of porous friction courses in urban environments. TRANSPORTES, 30(1), 2581. https://doi.org/10.14295/transportes.v30i1.2581

Issue

Section

Artigos