Fatigue cracking prediction of cobblestone interlayer pavement using non-destructive testing and mechanistic-empirical analyses
DOI:
https://doi.org/10.58922/transportes.v32i3.3022Keywords:
Backcalculation. FWD. Cobblestone. Fatigue cracking. MeDiNa.Abstract
Several non-destructive testing (NTD) methods have been used to measure surface deflection, which makes to determine the elastic moduli of pavement layers through the back-calculation process and assess the structural capacity of asphalt pavements. In this study was evaluated the back-calculated moduli of the cobblestone interlayer pavements and the load capacity of this type of pavement related to the fatigue cracking criterion based on a mechanistic-empirical analysis. The employed methodology included the performance of on-site trials using non-destructive testing with the Falling Weight Deflectometer (FWD) devices on 84 test points in granular and cobblestone interlayer pavements, determination of deflection basin parameters (DBP), back-calculation layers’ moduli, and estimate of the fatigue cracking performance of the pavements by mechanistic-empirical analyses in MeDiNa software. The pavements with a cobblestone base layer displayed greater deflection measurements on the load application point compared to those measured on pavements with a granular base layer, indicating that conventional pavement displayed more stiffness. Cobblestone interlayer pavement displayed greater amounts of cracked area compared to granular base layer pavements showing lower load capacity based on the fatigue criterion. The DBP-based method by FWD test was able to identify the structural differences between the layers of pavements evaluated and identify the cracking evolution.
Downloads
References
AASHTO (2015) Mechanistic-empirical Pavement Design Guide: a Manual of Practice. 2nd ed. Washington, D.C.: AASHTO.
Andrade, L.R.; I.S. Bessa; K.L. Vasconcelos et al. (2024) Structural performance using deflection basin parameters of asphalt pavements with different base materials under heavy traffic. International Journal of Pavement Research and Technology, v. 17, n. 5, p. 1353-1366. DOI: 10.1007/s42947-023-00307-w. DOI: https://doi.org/10.1007/s42947-023-00307-w
Autelitano, F.; E. Garilli and F. Giuliani (2020) Criteria for the selection and design of joints for street pavements in natural stone. Construction & Building Materials, v. 259, n. 6, p. 119722. DOI: 10.1016/j.conbuildmat.2020.119722. DOI: https://doi.org/10.1016/j.conbuildmat.2020.119722
Babadopulos, L.; J.B. Soares and V.T.F. Castelo Branco et al. (2015) Interpreting fatigue tests in hot mix asphalt (HMA) using concepts from viscoelasticity and damage mechanics. Transportes, v. 23, n. 2, p. 85-94. DOI: 10.14295/transportes.v23i2.898. DOI: https://doi.org/10.14295/transportes.v23i2.898
Camacho-Garita, E.; R. Puello-Bolaño; P. Laurent-Matamoros et al. (2019) Structural analysis for APT sections based on deflection parameters. Transportation Research Record: Journal of the Transportation Research Board, v. 2673, n. 3, p. 313-322. DOI: 10.1177/0361198119828284. DOI: https://doi.org/10.1177/0361198119828284
Cao, W.; L.N. Mohammad and P. Barghabany (2018) Use of viscoelastic continuum damage theory to correlate fatigue resistance of asphalt binders and mixtures. International Journal of Geomechanics, v. 18, n. 11, p. 04018151. DOI: 10.1061/(ASCE) GM.1943-5622.0001306. DOI: https://doi.org/10.1061/(ASCE)GM.1943-5622.0001306
Chen, C.; S. Lin; R.C. Williams et al. (2018) Non-destructive modulus testing and performance evaluation for asphalt pavement reflective cracking mitigation treatments. The Baltic Journal of Road and Bridge Engineering, v. 13, n. 1, p. 46-53. DOI: 10.3846/ bjrbe.2018.392. DOI: https://doi.org/10.3846/bjrbe.2018.392
Chen, X.; Z. Zhang and J. Lambert (2014) Field performance evaluation of stone interlayer pavement in Louisiana. The International Journal of Pavement Engineering, v. 15, n. 8, p. 708-717. DOI: 10.1080/10298436.2013.857774. DOI: https://doi.org/10.1080/10298436.2013.857774
Delgadillo, R. and S. Monsalve (2021) Fatigue testing of chilean asphalt mixtures and data fitting with phenomenological models. Road Materials and Pavement Design, v. 22, n. 12, p. 2919-2930. DOI: 10.1080/14680629.2020.1794941. DOI: https://doi.org/10.1080/14680629.2020.1794941
DER (2006) IP-DE-P00/003: Instrução de Projeto de Pavimentação. São Paulo.
DNER-PRO 273 (1996) Determinação de Deflexões Utilizando Deflectômetro de Impacto Tipo “Falling Weight Deflectometer (FWD)”: Procedimento. Rio de Janeiro.
El-Ashwah, A.S.; S.M. El-Badawy and A.R. Gabr (2021) A simplified mechanistic-empirical flexible pavement design method for moderate to hot climate regions. Sustainability, v. 13, n. 19, p. 10760. DOI: 10.3390/su131910760. DOI: https://doi.org/10.3390/su131910760
Franco, F. (2007) Método de Dimensionamento Mecanístico-Empírico de Pavimentos Asfálticos – SISPAV. Tese (doutorado). Universidade Federal do Rio de Janeiro. Rio de Janeiro.
Franco, F., L. Motta (2018) Guia para Utilização de Método Mecanístico-empírico: Apresentação dos Programas Desenvolvidos. Relatório parcial IV(A). Convênio UFRJ/DNIT. Projeto DNIT TED N°682/2014. Brasília.
Fritzen, M. et al. (2019) Atualização da função de transferência do dano de fadiga para a área trincado do Programa Medina. In 9º Congresso Rodoviário Português. Lisboa: Centro Rodoviário Português.
Fu, G.; Y. Zhao; G. Wang et al. (2022a) Evaluation of the effects of transverse cracking on the falling weight deflectometer data of asphalt pavements. The International Journal of Pavement Engineering, v. 23, n. 9, p. 3198-3211. DOI: 10.1080/10298436.2021.1886295. DOI: https://doi.org/10.1080/10298436.2021.1886295
Fu, G.H.; H. Wang; Y. Zhao et al. (2022b) Non‐destructive evaluation of longitudinal cracking in semi‐rigid asphalt pavements using FWD deflection data. Structural Control and Health Monitoring, v. 29, n. 10, p. ve3050. DOI: 10.1002/stc.3050. DOI: https://doi.org/10.1002/stc.3050
Garilli, E.; F. Autelitano; R. Roncella et al. (2020) The influence of laying patterns on the behaviour of historic stone pavements subjected to horizontal loads. Construction & Building Materials, v. 258, p. 119657. DOI: 10.1016/j.conbuildmat.2020.119657. DOI: https://doi.org/10.1016/j.conbuildmat.2020.119657
Gong, H.; B. Huang; X. Shu et al. (2017) Local calibration of the fatigue cracking models in the mechanistic-empirical pavement design guide for Tennessee. Road Materials and Pavement Design, v. 18, n. sup3, p. 130-138. DOI: 10.1080/14680629.2017.1329868. DOI: https://doi.org/10.1080/14680629.2017.1329868
Horak, E. (2008) Benchmarking the structural condition of flexible pavements with deflection bowl parameters. Journal of the South African Institution of Civil Engineers, v. 50, p. 2-9.
IP-02 (2004). Classificação das Vias. São Paulo: Secretaria de Infraestrutura Urbana.
Ishaq, M.A. and F. Giustozzi (2021) Correlation between rheological fatigue tests on bitumen and various cracking tests on asphalt mixtures. Materials, v. 14, n. 24, p. 7839. DOI: 10.3390/ma14247839. DOI: https://doi.org/10.3390/ma14247839
Jiang, X.; J. Gabrielson; B. Huang et al. (2020) Evaluation of inverted pavement by structural condition indicators from falling weight deflectometer. Construction & Building Materials, v. 319, p. 125991. DOI: 10.1016/j.conbuildmat.2021.125991. DOI: https://doi.org/10.1016/j.conbuildmat.2021.125991
Kheradmandi, N. and A. Modarres (2018) Precision of back-calculation analysis and independent parameters-based models in estimating the pavement layers modulus: field and experimental study. Construction & Building Materials, v. 171, p. 598-610. DOI: 10.1016/j.conbuildmat.2018.03.211. DOI: https://doi.org/10.1016/j.conbuildmat.2018.03.211
Klug, A.; A. Ng and A. Faxina (2022) Application of the viscoelastic continuum damage theory to study the fatigue performance of asphalt mixtures: a literature review. Sustainability, v. 14, n. 9, p. 4973. DOI: 10.3390/su14094973. DOI: https://doi.org/10.3390/su14094973
Mabrouk, G.; O.S. Elbagalati; S. Dessouky et al. (2020) Using ANN modeling for pavement layer moduli backcalculation as a function of traffic speed deflections. Construction & Building Materials, v. 315, p. 125736. DOI: 10.1016/j.conbuildmat.2021.125736. DOI: https://doi.org/10.1016/j.conbuildmat.2021.125736
Nery, C.C.Z. and A.G. Santos (2021) Structural evaluation of pavements applying the MeDiNa Method and FWD and Benkelman beam deflection measurements. Transportes, v. 29, n. 4, p. 1-14. DOI: 10.14295/transportes.v29i4.2502. DOI: https://doi.org/10.14295/transportes.v29i4.2502
Norouzi, Y.; S.H. Ghasemi; A.S. Nowak et al. (2022) Performance-based design of asphalt pavements concerning the reliability analysis. Construction & Building Materials, v. 332, p. 127393. DOI: 10.1016/j.conbuildmat.2022.127393. DOI: https://doi.org/10.1016/j.conbuildmat.2022.127393
Oteki, D.A.; A. Yeneneh; D.S. Gedafa et al. (2024) Evaluating the fatigue-cracking resistance of North Dakota’s asphalt mixtures. Transportation Research Record: Journal of the Transportation Research Board. In press. DOI: 10.1177/03611981241236796. DOI: https://doi.org/10.1177/03611981241236796
Pais, J.; C. Santos; P. Pereira et al. (2020) The adjustment of pavement deflections due to temperature variations. The International Journal of Pavement Engineering, v. 21, n. 13, p. 1585-1594. DOI: 10.1080/10298436.2018.1557334. DOI: https://doi.org/10.1080/10298436.2018.1557334
Qian, G.; C. Shi; H. Yu et al. (2021) Evaluation of different modulus input on the mechanical responses of asphalt pavement based on field measurements. Construction & Building Materials, v. 312, p. 125299. DOI: 10.1016/j.conbuildmat.2021.125299. DOI: https://doi.org/10.1016/j.conbuildmat.2021.125299
Rahman, M. and A. Vargas-Nordcbeck (2021) Structural performance of sections treated with thin overlays for pavement preservation. Transportation Research Record: Journal of the Transportation Research Board, v. 2675, n. 8, p. 382-393. DOI: 10.1177/0361198121997816. DOI: https://doi.org/10.1177/0361198121997816
Rasoulian, M.; B. Becnel and G. Keel (2020) Stone interlayer pavement design. Transportation Research Record: Journal of the Transportation Research Board, v. 1709, n. 1, p. 60-68. DOI: 10.3141/1709-08. DOI: https://doi.org/10.3141/1709-08
Rocha, M.L. (2020) Influência dos Módulos de Resiliência Iniciais no Procedimento de Retroanálise de Pavimentos Flexíveis. Dissertação (mestrado). Universidade Federal de Juiz de Fora. Juiz de Fora, MG.
Saboo, N.; B. Das and P. Kumar (2016) New phenomenological approach for modelling fatigue life of asphalt mixes, Construction & Building Materials, v. 121, p. 134-42. DOI: 10.1016/j.conbuildmat.2016.05.147. DOI: https://doi.org/10.1016/j.conbuildmat.2016.05.147
Sabouri, M. and Y. Kim (2014) Development of a failure criterion for asphalt mixtures under different modes of fatigue loading. Transportation Research Record: Journal of the Transportation Research Board, v. 2447, n. 1, p. 117-125. DOI: 10.3141/2447-13. DOI: https://doi.org/10.3141/2447-13
Sangghaleh, A.E.; E. Pan; R. Green et al. (2014) Backcalculation of pavement layer elastic modulus and thickness with measurement errors. The International Journal of Pavement Engineering, v. 15, n. 6, p. 521-531. DOI: 10.1080/10298436.2013.786078. DOI: https://doi.org/10.1080/10298436.2013.786078
Scimemi, F.; G.T. Turetta and C. Celauro (2016) Backcalculation of airport pavement moduli and thickness using the Lévy Ant Colony Optimization Algorithm. Construction & Building Materials, v. 119, p. 288-295. DOI: 10.1016/j.conbuildmat.2016.05.072. DOI: https://doi.org/10.1016/j.conbuildmat.2016.05.072
Singh, A.; A. Sharma and T. Chopra (2020) Analysis of the flexible pavement using falling weight deflectometer for Indian National Highway Road Network. Transportation Research Procedia, v. 48, p. 3969-3979. DOI: 10.1016/j.trpro.2020.08.024. DOI: https://doi.org/10.1016/j.trpro.2020.08.024
Souza Jr., J.G.D. (2018) Aplicação do Novo Método de Dimensionamento de Pavimentos Asfálticos a Trechos de Uma Rodovia Federal. Dissertação (mestrado). Universidade Federal do Rio de Janeiro. Rio de Janeiro, RJ.
Titi, H.; M. Rasoulian; M. Martinez et al. (2003) Long-term performance of stone interlayer pavement. Journal of Transportation Engineering, v. 129, n. 2, p. 118-126. DOI: 10.1061/(ASCE)0733-947X(2003)129:2(118). DOI: https://doi.org/10.1061/(ASCE)0733-947X(2003)129:2(118)
Underwood, S.; C. Baek and Y. Kim (2012) Simplified viscoelastic continuum damage model as platform for asphalt concrete fatigue analysis. Transportation Research Record: Journal of the Transportation Research Board, v. 2296, n. 1, p. 36-45. DOI: 10.3141/2296-04. DOI: https://doi.org/10.3141/2296-04
Wang, H.; Z. Yang; S. Zhan et al. (2018) Fatigue performance and model of polyacrylonitrile fiber reinforced asphalt mixture. Applied Sciences, v. 8, n. 10, p. 1818. DOI: 10.3390/app8101818. DOI: https://doi.org/10.3390/app8101818
Wang, R. and X. An (2024) An optimized fatigue model of asphalt binder combining nonlinear viscoelastic and intrinsic healing characteristics. Construction & Building Materials, v. 424, p. 135946. DOI: 10.1016/j.conbuildmat.2024.135946. DOI: https://doi.org/10.1016/j.conbuildmat.2024.135946
Wang, Y.; S. Underwood and Y. Kim (2020) Development of a fatigue index parameter, S app, for asphalt mixes using viscoelastic continuum damage theory. The International Journal of Pavement Engineering, v. 23, n. 2, p. 1-15. DOI: 10.1080/10298436.2020.1751844. DOI: https://doi.org/10.1080/10298436.2020.1751844
Yang, S.; H. Park and C. Baek (2023) Fatigue cracking characteristics of asphalt pavement structure under aging and moisture damage. Sustainability, v. 15, n. 6, p. 4815. DOI: 10.3390/su15064815. DOI: https://doi.org/10.3390/su15064815
Zhang, Y.; J. Zhang; T. Ma et al. (2023) Predicting asphalt mixture fatigue life via four-point bending tests based on viscoelastic continuum damage mechanics. Case Studies in Construction Materials, v. 19, e02671. DOI: 10.1016/j.cscm.2023.e02671. DOI: https://doi.org/10.1016/j.cscm.2023.e02671
Zhao, J. and H. Wang (2021) Mechanistic-empirical analysis of asphalt pavement fatigue cracking under vehicular dynamic loads. Construction & Building Materials, v. 284, p. 122877. DOI: 10.1016/j.conbuildmat.2021.122877. DOI: https://doi.org/10.1016/j.conbuildmat.2021.122877
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Giovanni Pasquale Beninca, Adriana Goulart
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who submit papers for publication by TRANSPORTES agree to the following terms:
- Authors retain copyright and grant TRANSPORTES the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors may enter into separate, additional contractual arrangements for the non-exclusive distribution of this journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in TRANSPORTES.
- Authors are allowed and encouraged to post their work online (e.g., in institutional repositories or on their website) after publication of the article. Authors are encouraged to use links to TRANSPORTES (e.g., DOIs or direct links) when posting the article online, as TRANSPORTES is freely available to all readers.
- Authors have secured all necessary clearances and written permissions to published the work and grant copyright under the terms of this agreement. Furthermore, the authors assume full responsibility for any copyright infringements related to the article, exonerating ANPET and TRANSPORTES of any responsibility regarding copyright infringement.
- Authors assume full responsibility for the contents of the article submitted for review, including all necessary clearances for divulgation of data and results, exonerating ANPET and TRANSPORTES of any responsibility regarding to this aspect.