Fatigue cracking prediction of cobblestone interlayer pavement using non-destructive testing and mechanistic-empirical analyses

Authors

DOI:

https://doi.org/10.58922/transportes.v32i3.3022

Keywords:

Backcalculation. FWD. Cobblestone. Fatigue cracking. MeDiNa.

Abstract

Several non-destructive testing (NTD) methods have been used to measure surface deflection, which makes to determine the elastic moduli of pavement layers through the back-calculation process and assess the structural capacity of asphalt pavements. In this study was evaluated the back-calculated moduli of the cobblestone interlayer pavements and the load capacity of this type of pavement related to the fatigue cracking criterion based on a mechanistic-empirical analysis. The employed methodology included the performance of on-site trials using non-destructive testing with the Falling Weight Deflectometer (FWD) devices on 84 test points in granular and cobblestone interlayer pavements, determination of deflection basin parameters (DBP), back-calculation layers’ moduli, and estimate of the fatigue cracking performance of the pavements by mechanistic-empirical analyses in MeDiNa software. The pavements with a cobblestone base layer displayed greater deflection measurements on the load application point compared to those measured on pavements with a granular base layer, indicating that conventional pavement displayed more stiffness. Cobblestone interlayer pavement displayed greater amounts of cracked area compared to granular base layer pavements showing lower load capacity based on the fatigue criterion. The DBP-based method by FWD test was able to identify the structural differences between the layers of pavements evaluated and identify the cracking evolution.

Downloads

Download data is not yet available.

Author Biography

Adriana Goulart dos Santos, Universidade do Estado de Santa Catarina

É graduada em Engenharia Civil pela Universidade Federal de Santa Maria (UFSM). Possui mestrado e doutorado em Engenharia de Transportes, pela Escola de Engenharia de São Carlos da Universidade de São Paulo (USP). Atualmente é professora no Departamento de Engenharia Civil, no Centro de Ciências Tecnológicas da Universidade do Estado de Santa Catarina (UDESC). Nos cursos de graduação e pós-graduação em Engenharia Civil, atua na área de Infraestrutura de Transportes. Orienta trabalhos de conclusão de curso e dissertações de mestrado nos seguintes temas: Solo, Concreto e Materiais Alternativos, Dimensionamento de Pavimentos, Avaliação e Gestão de Pavimentos e Uso do Solo e Transportes.

References

AASHTO (2015) Mechanistic-empirical Pavement Design Guide: a Manual of Practice. 2nd ed. Washington, D.C.: AASHTO.

Andrade, L.R.; I.S. Bessa; K.L. Vasconcelos et al. (2024) Structural performance using deflection basin parameters of asphalt pavements with different base materials under heavy traffic. International Journal of Pavement Research and Technology, v. 17, n. 5, p. 1353-1366. DOI: 10.1007/s42947-023-00307-w. DOI: https://doi.org/10.1007/s42947-023-00307-w

Autelitano, F.; E. Garilli and F. Giuliani (2020) Criteria for the selection and design of joints for street pavements in natural stone. Construction & Building Materials, v. 259, n. 6, p. 119722. DOI: 10.1016/j.conbuildmat.2020.119722. DOI: https://doi.org/10.1016/j.conbuildmat.2020.119722

Babadopulos, L.; J.B. Soares and V.T.F. Castelo Branco et al. (2015) Interpreting fatigue tests in hot mix asphalt (HMA) using concepts from viscoelasticity and damage mechanics. Transportes, v. 23, n. 2, p. 85-94. DOI: 10.14295/transportes.v23i2.898. DOI: https://doi.org/10.14295/transportes.v23i2.898

Camacho-Garita, E.; R. Puello-Bolaño; P. Laurent-Matamoros et al. (2019) Structural analysis for APT sections based on deflection parameters. Transportation Research Record: Journal of the Transportation Research Board, v. 2673, n. 3, p. 313-322. DOI: 10.1177/0361198119828284. DOI: https://doi.org/10.1177/0361198119828284

Cao, W.; L.N. Mohammad and P. Barghabany (2018) Use of viscoelastic continuum damage theory to correlate fatigue resistance of asphalt binders and mixtures. International Journal of Geomechanics, v. 18, n. 11, p. 04018151. DOI: 10.1061/(ASCE) GM.1943-5622.0001306. DOI: https://doi.org/10.1061/(ASCE)GM.1943-5622.0001306

Chen, C.; S. Lin; R.C. Williams et al. (2018) Non-destructive modulus testing and performance evaluation for asphalt pavement reflective cracking mitigation treatments. The Baltic Journal of Road and Bridge Engineering, v. 13, n. 1, p. 46-53. DOI: 10.3846/ bjrbe.2018.392. DOI: https://doi.org/10.3846/bjrbe.2018.392

Chen, X.; Z. Zhang and J. Lambert (2014) Field performance evaluation of stone interlayer pavement in Louisiana. The International Journal of Pavement Engineering, v. 15, n. 8, p. 708-717. DOI: 10.1080/10298436.2013.857774. DOI: https://doi.org/10.1080/10298436.2013.857774

Delgadillo, R. and S. Monsalve (2021) Fatigue testing of chilean asphalt mixtures and data fitting with phenomenological models. Road Materials and Pavement Design, v. 22, n. 12, p. 2919-2930. DOI: 10.1080/14680629.2020.1794941. DOI: https://doi.org/10.1080/14680629.2020.1794941

DER (2006) IP-DE-P00/003: Instrução de Projeto de Pavimentação. São Paulo.

DNER-PRO 273 (1996) Determinação de Deflexões Utilizando Deflectômetro de Impacto Tipo “Falling Weight Deflectometer (FWD)”: Procedimento. Rio de Janeiro.

El-Ashwah, A.S.; S.M. El-Badawy and A.R. Gabr (2021) A simplified mechanistic-empirical flexible pavement design method for moderate to hot climate regions. Sustainability, v. 13, n. 19, p. 10760. DOI: 10.3390/su131910760. DOI: https://doi.org/10.3390/su131910760

Franco, F. (2007) Método de Dimensionamento Mecanístico-Empírico de Pavimentos Asfálticos – SISPAV. Tese (doutorado). Universidade Federal do Rio de Janeiro. Rio de Janeiro.

Franco, F., L. Motta (2018) Guia para Utilização de Método Mecanístico-empírico: Apresentação dos Programas Desenvolvidos. Relatório parcial IV(A). Convênio UFRJ/DNIT. Projeto DNIT TED N°682/2014. Brasília.

Fritzen, M. et al. (2019) Atualização da função de transferência do dano de fadiga para a área trincado do Programa Medina. In 9º Congresso Rodoviário Português. Lisboa: Centro Rodoviário Português.

Fu, G.; Y. Zhao; G. Wang et al. (2022a) Evaluation of the effects of transverse cracking on the falling weight deflectometer data of asphalt pavements. The International Journal of Pavement Engineering, v. 23, n. 9, p. 3198-3211. DOI: 10.1080/10298436.2021.1886295. DOI: https://doi.org/10.1080/10298436.2021.1886295

Fu, G.H.; H. Wang; Y. Zhao et al. (2022b) Non‐destructive evaluation of longitudinal cracking in semi‐rigid asphalt pavements using FWD deflection data. Structural Control and Health Monitoring, v. 29, n. 10, p. ve3050. DOI: 10.1002/stc.3050. DOI: https://doi.org/10.1002/stc.3050

Garilli, E.; F. Autelitano; R. Roncella et al. (2020) The influence of laying patterns on the behaviour of historic stone pavements subjected to horizontal loads. Construction & Building Materials, v. 258, p. 119657. DOI: 10.1016/j.conbuildmat.2020.119657. DOI: https://doi.org/10.1016/j.conbuildmat.2020.119657

Gong, H.; B. Huang; X. Shu et al. (2017) Local calibration of the fatigue cracking models in the mechanistic-empirical pavement design guide for Tennessee. Road Materials and Pavement Design, v. 18, n. sup3, p. 130-138. DOI: 10.1080/14680629.2017.1329868. DOI: https://doi.org/10.1080/14680629.2017.1329868

Horak, E. (2008) Benchmarking the structural condition of flexible pavements with deflection bowl parameters. Journal of the South African Institution of Civil Engineers, v. 50, p. 2-9.

IP-02 (2004). Classificação das Vias. São Paulo: Secretaria de Infraestrutura Urbana.

Ishaq, M.A. and F. Giustozzi (2021) Correlation between rheological fatigue tests on bitumen and various cracking tests on asphalt mixtures. Materials, v. 14, n. 24, p. 7839. DOI: 10.3390/ma14247839. DOI: https://doi.org/10.3390/ma14247839

Jiang, X.; J. Gabrielson; B. Huang et al. (2020) Evaluation of inverted pavement by structural condition indicators from falling weight deflectometer. Construction & Building Materials, v. 319, p. 125991. DOI: 10.1016/j.conbuildmat.2021.125991. DOI: https://doi.org/10.1016/j.conbuildmat.2021.125991

Kheradmandi, N. and A. Modarres (2018) Precision of back-calculation analysis and independent parameters-based models in estimating the pavement layers modulus: field and experimental study. Construction & Building Materials, v. 171, p. 598-610. DOI: 10.1016/j.conbuildmat.2018.03.211. DOI: https://doi.org/10.1016/j.conbuildmat.2018.03.211

Klug, A.; A. Ng and A. Faxina (2022) Application of the viscoelastic continuum damage theory to study the fatigue performance of asphalt mixtures: a literature review. Sustainability, v. 14, n. 9, p. 4973. DOI: 10.3390/su14094973. DOI: https://doi.org/10.3390/su14094973

Mabrouk, G.; O.S. Elbagalati; S. Dessouky et al. (2020) Using ANN modeling for pavement layer moduli backcalculation as a function of traffic speed deflections. Construction & Building Materials, v. 315, p. 125736. DOI: 10.1016/j.conbuildmat.2021.125736. DOI: https://doi.org/10.1016/j.conbuildmat.2021.125736

Nery, C.C.Z. and A.G. Santos (2021) Structural evaluation of pavements applying the MeDiNa Method and FWD and Benkelman beam deflection measurements. Transportes, v. 29, n. 4, p. 1-14. DOI: 10.14295/transportes.v29i4.2502. DOI: https://doi.org/10.14295/transportes.v29i4.2502

Norouzi, Y.; S.H. Ghasemi; A.S. Nowak et al. (2022) Performance-based design of asphalt pavements concerning the reliability analysis. Construction & Building Materials, v. 332, p. 127393. DOI: 10.1016/j.conbuildmat.2022.127393. DOI: https://doi.org/10.1016/j.conbuildmat.2022.127393

Oteki, D.A.; A. Yeneneh; D.S. Gedafa et al. (2024) Evaluating the fatigue-cracking resistance of North Dakota’s asphalt mixtures. Transportation Research Record: Journal of the Transportation Research Board. In press. DOI: 10.1177/03611981241236796. DOI: https://doi.org/10.1177/03611981241236796

Pais, J.; C. Santos; P. Pereira et al. (2020) The adjustment of pavement deflections due to temperature variations. The International Journal of Pavement Engineering, v. 21, n. 13, p. 1585-1594. DOI: 10.1080/10298436.2018.1557334. DOI: https://doi.org/10.1080/10298436.2018.1557334

Qian, G.; C. Shi; H. Yu et al. (2021) Evaluation of different modulus input on the mechanical responses of asphalt pavement based on field measurements. Construction & Building Materials, v. 312, p. 125299. DOI: 10.1016/j.conbuildmat.2021.125299. DOI: https://doi.org/10.1016/j.conbuildmat.2021.125299

Rahman, M. and A. Vargas-Nordcbeck (2021) Structural performance of sections treated with thin overlays for pavement preservation. Transportation Research Record: Journal of the Transportation Research Board, v. 2675, n. 8, p. 382-393. DOI: 10.1177/0361198121997816. DOI: https://doi.org/10.1177/0361198121997816

Rasoulian, M.; B. Becnel and G. Keel (2020) Stone interlayer pavement design. Transportation Research Record: Journal of the Transportation Research Board, v. 1709, n. 1, p. 60-68. DOI: 10.3141/1709-08. DOI: https://doi.org/10.3141/1709-08

Rocha, M.L. (2020) Influência dos Módulos de Resiliência Iniciais no Procedimento de Retroanálise de Pavimentos Flexíveis. Dissertação (mestrado). Universidade Federal de Juiz de Fora. Juiz de Fora, MG.

Saboo, N.; B. Das and P. Kumar (2016) New phenomenological approach for modelling fatigue life of asphalt mixes, Construction & Building Materials, v. 121, p. 134-42. DOI: 10.1016/j.conbuildmat.2016.05.147. DOI: https://doi.org/10.1016/j.conbuildmat.2016.05.147

Sabouri, M. and Y. Kim (2014) Development of a failure criterion for asphalt mixtures under different modes of fatigue loading. Transportation Research Record: Journal of the Transportation Research Board, v. 2447, n. 1, p. 117-125. DOI: 10.3141/2447-13. DOI: https://doi.org/10.3141/2447-13

Sangghaleh, A.E.; E. Pan; R. Green et al. (2014) Backcalculation of pavement layer elastic modulus and thickness with measurement errors. The International Journal of Pavement Engineering, v. 15, n. 6, p. 521-531. DOI: 10.1080/10298436.2013.786078. DOI: https://doi.org/10.1080/10298436.2013.786078

Scimemi, F.; G.T. Turetta and C. Celauro (2016) Backcalculation of airport pavement moduli and thickness using the Lévy Ant Colony Optimization Algorithm. Construction & Building Materials, v. 119, p. 288-295. DOI: 10.1016/j.conbuildmat.2016.05.072. DOI: https://doi.org/10.1016/j.conbuildmat.2016.05.072

Singh, A.; A. Sharma and T. Chopra (2020) Analysis of the flexible pavement using falling weight deflectometer for Indian National Highway Road Network. Transportation Research Procedia, v. 48, p. 3969-3979. DOI: 10.1016/j.trpro.2020.08.024. DOI: https://doi.org/10.1016/j.trpro.2020.08.024

Souza Jr., J.G.D. (2018) Aplicação do Novo Método de Dimensionamento de Pavimentos Asfálticos a Trechos de Uma Rodovia Federal. Dissertação (mestrado). Universidade Federal do Rio de Janeiro. Rio de Janeiro, RJ.

Titi, H.; M. Rasoulian; M. Martinez et al. (2003) Long-term performance of stone interlayer pavement. Journal of Transportation Engineering, v. 129, n. 2, p. 118-126. DOI: 10.1061/(ASCE)0733-947X(2003)129:2(118). DOI: https://doi.org/10.1061/(ASCE)0733-947X(2003)129:2(118)

Underwood, S.; C. Baek and Y. Kim (2012) Simplified viscoelastic continuum damage model as platform for asphalt concrete fatigue analysis. Transportation Research Record: Journal of the Transportation Research Board, v. 2296, n. 1, p. 36-45. DOI: 10.3141/2296-04. DOI: https://doi.org/10.3141/2296-04

Wang, H.; Z. Yang; S. Zhan et al. (2018) Fatigue performance and model of polyacrylonitrile fiber reinforced asphalt mixture. Applied Sciences, v. 8, n. 10, p. 1818. DOI: 10.3390/app8101818. DOI: https://doi.org/10.3390/app8101818

Wang, R. and X. An (2024) An optimized fatigue model of asphalt binder combining nonlinear viscoelastic and intrinsic healing characteristics. Construction & Building Materials, v. 424, p. 135946. DOI: 10.1016/j.conbuildmat.2024.135946. DOI: https://doi.org/10.1016/j.conbuildmat.2024.135946

Wang, Y.; S. Underwood and Y. Kim (2020) Development of a fatigue index parameter, S app, for asphalt mixes using viscoelastic continuum damage theory. The International Journal of Pavement Engineering, v. 23, n. 2, p. 1-15. DOI: 10.1080/10298436.2020.1751844. DOI: https://doi.org/10.1080/10298436.2020.1751844

Yang, S.; H. Park and C. Baek (2023) Fatigue cracking characteristics of asphalt pavement structure under aging and moisture damage. Sustainability, v. 15, n. 6, p. 4815. DOI: 10.3390/su15064815. DOI: https://doi.org/10.3390/su15064815

Zhang, Y.; J. Zhang; T. Ma et al. (2023) Predicting asphalt mixture fatigue life via four-point bending tests based on viscoelastic continuum damage mechanics. Case Studies in Construction Materials, v. 19, e02671. DOI: 10.1016/j.cscm.2023.e02671. DOI: https://doi.org/10.1016/j.cscm.2023.e02671

Zhao, J. and H. Wang (2021) Mechanistic-empirical analysis of asphalt pavement fatigue cracking under vehicular dynamic loads. Construction & Building Materials, v. 284, p. 122877. DOI: 10.1016/j.conbuildmat.2021.122877. DOI: https://doi.org/10.1016/j.conbuildmat.2021.122877

Downloads

Published

2024-10-30

How to Cite

Beninca, G. P., & dos Santos, A. G. (2024). Fatigue cracking prediction of cobblestone interlayer pavement using non-destructive testing and mechanistic-empirical analyses. TRANSPORTES, 32(3), e3022. https://doi.org/10.58922/transportes.v32i3.3022

Issue

Section

Artigos