Customization and application of an automated data collection tool of pedestrian crossing at signalized intersections

Authors

DOI:

https://doi.org/10.58922/transportes.v32i3.2961

Keywords:

YOLO. Computer vision. Signalized intersections. Active transport.

Abstract

Pedestrian crossing during vehicular green time is a problem that still requires better understanding and investigation given the complexity of the variables involved and their interrelationships. Automated collection tools can be important for observing and for analyzing these variables and interrelationships. The main objective of this study is to customize and apply an automated tool to collect data of important variables in studies of pedestrian crossings at signalized intersections, such as vehicle headways, pedestrian delays, vehicle speeds, vehicle types, and crossing times, per lane. The tool, applied to a video of a signalized intersection in Fortaleza, consisted of the YOLOv7 and StrongSORT algorithms. The tool training mAP was approximately 90%. In total, 9427 vehicles and 723 pedestrians were tracked; the headways showed great amplitude, the average speed of vehicles was 28 km/h, and the average delay for pedestrians was 18 s. Validation with a collection tool (RUBA) showed that there were no significant differences in the two methods regarding the vehicle passage times and headways. For vehicle speeds, the differences were circa ± 6 km/h, and for the pedestrian variables, the mean of differences were up to 0.2 sec.

Downloads

Download data is not yet available.

References

Afshari, A.; E. Ayati and M. Barakchi (2021) Evaluating the effects of external factors on pedestrian violations at signalized intersections (a case study of Mashhad, Iran). IATSS Research, v. 45, n. 2, p. 234-240. DOI: 10.1016/j.iatssr.2020.10.004. DOI: https://doi.org/10.1016/j.iatssr.2020.10.004

Al-qaness, M.A.A.; A.A. Abbasi; H. Fan et al. (2021) An improved YOLO-based road traffic monitoring system. Computing, v. 103, n. 2, p. 211-230. DOI: 10.1007/s00607-020-00869-8. DOI: https://doi.org/10.1007/s00607-020-00869-8

Bewley, A.; Z. Ge; L. Ott et al. (2016). Simple online and realtime tracking. In 2016 IEEE International Conference on Image Processing (ICIP). New York: IEEE, p. 3464-3468. DOI: 10.1109/ICIP.2016.7533003. DOI: https://doi.org/10.1109/ICIP.2016.7533003

Bochkovskiy, A.; C.-Y. Wang and H.-Y.M. Liao (2020). YOLOv4: optimal speed and accuracy of object detection. ArXiv. DOI: 10.48550/ arXiv.2004.10934.

Castro Jr., F.A.B.; M.M. Castro-Neto and F.J.C. Cunto (2023) Análise do atraso e da brecha aceita dos pedestres em travessias semaforizadas: um estudo na cidade de Fortaleza utilizando técnicas de visão computacional baseadas em deep learning. Transportes, v. 31, n. 2, e2845. DOI: 10.58922/transportes.v31i2.2845. DOI: https://doi.org/10.58922/transportes.v31i2.2845

Chandra, S.; R. Rastogi and V.R. Das (2014) Descriptive and parametric analysis of pedestrian gap acceptance in mixed traffic conditions. KSCE Journal of Civil Engineering, v. 18, n. 1, p. 284-293. DOI: 10.1007/s12205-014-0363-z. DOI: https://doi.org/10.1007/s12205-014-0363-z

Dhoke, A.; A. Kumar and I. Ghosh (2021) Hazard-based duration approach to pedestrian crossing behavior at signalized intersections. Transportation Research Record: Journal of the Transportation Research Board, v. 2675, n. 9, p. 519. DOI: 10.1177/03611981211003102. DOI: https://doi.org/10.1177/03611981211003102

Dommes, A.; M.A. Granié; M.S. Cloutier et al. (2015) Red light violations by adult pedestrians and other safety-related behaviors at signalized crosswalks. Accident; Analysis and Prevention, v. 80, p. 67-75. DOI: 10.1016/j.aap.2015.04.002. PMid:25884542. DOI: https://doi.org/10.1016/j.aap.2015.04.002

Du, Y.; Z. Zhao; Y. Song et al. (2023) StrongSORT: make DeepSORT great again. IEEE Transactions on Multimedia, v. 25, p. 8725- 8737. DOI: 10.1109/TMM.2023.3240881. DOI: https://doi.org/10.1109/TMM.2023.3240881

Genç, B. and H. Tunc (2019) Optimal training and test sets design for machine learning. Turkish Journal of Electrical Engineering and Computer Sciences, v. 27, n. 2, p. 1534-1545. DOI: 10.3906/elk-1807-212. DOI: https://doi.org/10.3906/elk-1807-212

Koh, P.P. and Y.D. Wong (2014) Gap acceptance of violators at signalized pedestrian crossings. Accident; Analysis and Prevention, v. 62, p. 178-185. DOI: 10.1016/j.aap.2013.09.020. PMid:24172084. DOI: https://doi.org/10.1016/j.aap.2013.09.020

Leal-Taixé, L.; A. Milan; I. Reid et al. (2015). MOTChallenge 2015: towards a benchmark for multi-target tracking. ArXiv. DOI: 10.48550/arXiv.1504.01942.

Luo, W.; J. Xing; A. Milan et al. (2022). Multiple object tracking: a literature review. ArXiv. DOI: 10.48550/arXiv.1409.7618. DOI: https://doi.org/10.1016/j.artint.2020.103448

Ma, Y.; S. Lu and Y. Zhang (2020) Analysis on illegal crossing behavior of pedestrians at signalized intersections based on Bayesian network. Journal of Advanced Transportation, v. 2020, p. 1-14. DOI: 10.1155/2020/2675197. DOI: https://doi.org/10.1155/2020/2675197

Marisamynathan, S. and P. Vedagiri (2019) Pedestrian perception-based level-of-service model at signalized intersection crosswalks. Journal of Modern Transportation, v. 27, n. 4, p. 266-281. DOI: 10.1007/s40534-019-00196-5. DOI: https://doi.org/10.1007/s40534-019-00196-5

Mukherjee, D. and S. Mitra (2022) What affects pedestrian crossing difficulty at urban intersections in a developing country. IATSS Research, v. 46, n. 4, p. 586-601. DOI: 10.1016/j.iatssr.2022.10.002. DOI: https://doi.org/10.1016/j.iatssr.2022.10.002

Nikolaou, D.; A. Ntontis; E. Michelaraki et al. (2023) Pedestrian safety attitudes and self-declared behavior in Greece. IATSS Research, v. 47, n. 1, p. 14-24. DOI: 10.1016/j.iatssr.2022.12.002. DOI: https://doi.org/10.1016/j.iatssr.2022.12.002

Noh, B.; H. Park; S. Lee et al. (2022) Vision-based pedestrian’s crossing risky behavior extraction and analysis for intelligent mobility safety system. Sensors, v. 22, n. 9, p. 3451. DOI: 10.3390/s22093451. PMid:35591139. DOI: https://doi.org/10.3390/s22093451

Onelcin, P. and Y. Alver (2015) Illegal crossing behavior of pedestrians at signalized intersections: factors affecting the gap acceptance. Transportation Research Part F: Traffic Psychology and Behaviour, v. 31, p. 124-132. DOI: 10.1016/j.trf.2015.04.007. DOI: https://doi.org/10.1016/j.trf.2015.04.007

Onelcin, P. and Y. Alver (2017) The crossing speed and safety margin of pedestrians at signalized intersections. Transportation Research Procedia, v. 22, p. 3-12. DOI: 10.1016/j.trpro.2017.03.002. DOI: https://doi.org/10.1016/j.trpro.2017.03.002

Padilla, R.; S. Netto and E.A.B. Silva (2020). A survey on performance metrics for object-detection algorithms. In Proceedings of the International Conference on Systems, Signals, and Image Processing (IWSSIP). New York: IEEE. DOI: 10.1109/ IWSSIP48289.2020.9145130. DOI: https://doi.org/10.1109/IWSSIP48289.2020.9145130

Raoniar, R. and A.K. Maurya (2022) Pedestrian red-light violation at signalized intersection crosswalks: Influence of social and non-social factors. Safety Science, v. 147, p. 105583. DOI: 10.1016/j.ssci.2021.105583. DOI: https://doi.org/10.1016/j.ssci.2021.105583

Redmon, J. and A. Farhadi (2016) YOLOv3: an incremental improvement. ArXiv. DOI: 10.48550/arXiv.1804.02767.

Redmon, J.; S. Divvala; R. Girshick et al. (2016) You only look once: unified, real-time object detection. ArXiv. DOI: 10.48550/ arXiv.1506.02640. DOI: https://doi.org/10.1109/CVPR.2016.91

Sayed, T.; M. Zaki and A. Tageldin (2016). Automated pedestrians data collection using computer vision. In: Leon-Garcia, A. (ed.) Smart City 360°. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering. Cham: Springer International Publishing, v. 166, p. 31-43. DOI: 10.1007/978-3-319-33681-7_3. DOI: https://doi.org/10.1007/978-3-319-33681-7_3

Song, Y.; J. Wang and X. Long (2019) Analysis and modeling of pedestrian crossing behavior at intersections. In 19th International Conference of Transportation. Reston: ASCE, p. 6083-6093. DOI: 10.1061/9780784482292.522. DOI: https://doi.org/10.1061/9780784482292.522

Tonning, C.; T.K.O. Madsen; C.H. Bahnsen et al. (2017) Road user behavior analyzes based on video detections: Status and best practice examples from the RUBA software. In Proceedings of the 24th ITS World Congress. Dubai: ITS World, p. 1-10.

Ultralytics (2023) YOLOv8 Documentation. Available at: <https://docs.ultralytics.com/> (accessed 10/12/2023).

Wang, C.-Y.; A. Bochkovskiy and H.-Y.M. Liao (2022) YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. ArXiv. DOI: 10.48550/arXiv.2207.02696. DOI: https://doi.org/10.1109/CVPR52729.2023.00721

Wojke, N.; A. Bewley and D. Paulus (2017) Simple online and realtime tracking with a deep association metric. In IEEE International Conference on Image Processing (ICIP). New York: IEEE, p. 3645-3649. DOI: 10.1109/ICIP.2017.8296962. DOI: https://doi.org/10.1109/ICIP.2017.8296962

Zhu, D.; N.N. Sze and L. Bai (2021) Roles of personal and environmental factors in the red-light running propensity of pedestrians: case study at the urban crosswalks. Transportation Research Part F: Traffic Psychology and Behaviour, v. 76, p. 47-58. DOI: 10.1016/j.trf.2020.11.001. DOI: https://doi.org/10.1016/j.trf.2020.11.001

Downloads

Published

2024-10-15

How to Cite

de Abreu e Trez, J., Albuquerque de Sousa, C., Macêdo de Araújo, A., & Mendonça de Castro Neto, M. (2024). Customization and application of an automated data collection tool of pedestrian crossing at signalized intersections. TRANSPORTES, 32(3), e2961. https://doi.org/10.58922/transportes.v32i3.2961

Issue

Section

Artigos