Influence of electrical resistance in a prototype for energy generation in road pavements using piezoelectricity
DOI:
https://doi.org/10.58922/transportes.v32i2.2881Keywords:
PZT, Mistura asfáltica, SustentabilidadeAbstract
The production of electrical energy from piezoelectric elements in pavement has been the object of study of national and international research. However, one of the impasses is the equivalence of the internal and external electrical resistances of the prototype. The objective of this paper was to analyze the influence of the variation of the external resistances in a prototype of energy generation. For this, 5 loads and 3 different frequencies were applied to simulate traffic, and 5 values of electrical resistance. As results, it was observed that for higher frequencies there was an increase of up to 90% in the electrical output when comparing the lower electrical resistances with the higher ones. In addition, the introduction of the inductor and the resistance box in the circuit can contribute to the efficiency of the prototype when applied in the road area.
Downloads
References
Blue Sol (2020) Energia Solar e Eólica: Preço, Diferenças e Melhores Locais. Disponı́vel em: <https://blog.bluesol.com.br/energia-solar-e-eolica/> (acesso em 16/01/2021).
Callister, W.D. (2016) Ciência e Engenharia de Materiais: uma Introdução (9a ed.). Rio de Janeiro: LTC.
Cao, Y.; A. Sha; Z. Liu et al. (2020) Electric energy output model of a piezoelectric transducer for pavement application under vehicle load excitation. Energy, v. 211, p. 118595. DOI: 10.1016/j.energy.2020.118595. DOI: https://doi.org/10.1016/j.energy.2020.118595
Ding, G.; X. Zhao; F. Sun et al. (2018) Effect of subgrade on piezoelectric energy harvesting under traffic loads. The International Journal of Pavement Engineering, v. 19, n. 8, p. 661-674. DOI: 10.1080/10298436.2017.1413241. DOI: https://doi.org/10.1080/10298436.2017.1413241
Duarte, F.; J.P. Champalimaud e A. Ferreira (2016) Waynergy vehicles: an innovative pavement energy harvest system. Proceedings of the Institution of Civil Engineers. Municipal Engineer, v. 169, n. 1, p. 13-18. DOI: 10.1680/muen.14.00021. DOI: https://doi.org/10.1680/muen.14.00021
Dutoit, N.E.; B.L. Wardle e S. Kim (2005) Design considerations for mems-scale piezoelectric mechanical vibration energy harvesters. Integrated Ferroelectrics, v. 71, n. 1, p. 121-160. DOI: 10.1080/10584580590964574. DOI: https://doi.org/10.1080/10584580590964574
ENEL (2023) Taxas, Tarifas e Impostos. Disponível em: <https://www.enel.com.br/pt-ceara/Tarifas_Enel.html> (acesso em 16/01/2023).
EPE (2020) Demanda de energia. In EPE (ed.) Plano Decenal de Expansão de Energia 2029. Brasília: Ministério de Minas e Energia. Disponível em: <https://www.epe.gov.br/sites-pt/publicacoes-dados-abertos/publicacoes/PublicacoesArquivos/publicacao-423/ topico-481/02%20Demandada%20de%20Energia.pdf> (acesso em 28/06/2022).
Harb, A. (2011) Energy harvesting: state-of-the-art. Renewable Energy, v. 36, n. 10, p. 2641-2654. DOI: 10.1016/j.renene.2010.06.014. DOI: https://doi.org/10.1016/j.renene.2010.06.014
Heller, L.F.; L.A.T. Brito; M.A.J. Coelho et al. (2023) Development of a pavement-embedded piezoelectric harvester in a real traffic environment. Sensors, v. 23, n. 9, p. 4238. DOI: 10.3390/s23094238. PMid:37177442. DOI: https://doi.org/10.3390/s23094238
Heywang, W. e H. Thomann (1984) Tailoring of piezoelectric ceramics. Annual Review of Materials Science, v. 14, n. 1, p. 27-47. DOI: 10.1146/annurev.ms.14.080184.000331. DOI: https://doi.org/10.1146/annurev.ms.14.080184.000331
Jiang, X.; Y. Li; J. Li et al. (2014) Piezoelectric energy harvesting from traffic-induced pavement vibrations. Journal of Renewable and Sustainable Energy, v. 6, n. 4, p. 043110. DOI: 10.1063/1.4891169. DOI: https://doi.org/10.1063/1.4891169
Kázmierski, T.J. e S. Beeby (2011) Energy Harvesting Systems: Principles, Modeling and Applications. New York: Springer. DOI: 10.1007/978-1-4419-7566-9. DOI: https://doi.org/10.1007/978-1-4419-7566-9
Khaligh, A. e O.G. Onar (2010) Energy Harvesting: Solar, Wind, and ocean Energy Conversion Systems. Boca Raton: CRC Press Inc.
Kim, S.; I. Sternb; J. Shen et al. (2018) Energy harvesting assessment using PZT sensors and roadway materials. International Journal of Thermal & Environmental Engineering, v. 16, n. 1, p. 19-25. DOI: 10.5383/ijtee.16.01.003. DOI: https://doi.org/10.5383/ijtee.16.01.003
Medina, J. e L.M.G. Motta (2015) Mecânica dos Pavimentos (3a ed.). Rio de Janeiro: Interciência.
Ministério da Infraestrutura (2021) Frota de Veículos – 2021. Brasília. Disponível em: <https://www.gov.br/infraestrutura/pt-br/ assuntos/transito/conteudo-denatran/frota-de-veiculos-2021> (acesso em: 31/03/2022).
Mitcheson, P.D.; E.M. Yeatman; G.K. Rao et al. (2008) Energy harvesting from human and machine motion for wireless electronic devices. Proceedings of the IEEE, v. 96, n. 9, p. 1457-1486. DOI: 10.1109/JPROC.2008.927494. DOI: https://doi.org/10.1109/JPROC.2008.927494
Mota, B.C. (2019) O Pavimento como Instrumento de Geração de Energia para o Desenvolvimento Sustentável de Cidades Inteligentes. Monografia (conclusão de curso). Universidade Federal do Ceará, Fortaleza.
Mota, B.C. e S.H.A. Barroso (2021) O uso do pavimento para geração de energia e desenvolvimento sustentável de cidades inteligentes. Transportes, v. 29, n. 2, p. 1-15. DOI: 10.14295/transportes.v29i2.2380. DOI: https://doi.org/10.14295/transportes.v29i2.2380
Mota, B.C.; B. Albuquerque Neto; S.H.A. Barroso et al. (2022) Characterization of piezoelectric energy production from asphalt pavements using a numerical-experimental framework. Sustainability, v. 14, n. 15, p. 9584. DOI: 10.3390/su14159584. DOI: https://doi.org/10.3390/su14159584
Moure, A.; M.A.I. Izquierdo Rodríguez; S. Rueda et al. (2016) Feasible integration in asphalt of piezoelectric cymbals for vibration energy harvesting. Energy Conversion and Management, v. 112, p. 246-253. DOI: 10.1016/j.enconman.2016.01.030. DOI: https://doi.org/10.1016/j.enconman.2016.01.030
Najini, H. e S.A. Muthukumaraswamy (2017) Piezoelectric energy generation from vehicle traffic with technoeconomic analysis. Journal of Renewable Energy, v. 2017, p. 1-16. DOI: 10.1155/2017/9643858. DOI: https://doi.org/10.1155/2017/9643858
Papagiannakis, A.T.; A. Montoya; S. Dessouky et al. (2017) Development and evaluation of piezoelectric prototypes for roadway energy harvesting. Journal of Energy Engineering, v. 143, n. 5, p. 04017034. DOI: 10.1061/(ASCE)EY.1943-7897.0000467. DOI: https://doi.org/10.1061/(ASCE)EY.1943-7897.0000467
Pinto, P.C. (2020) Simulação da implantação de dispositivo de energia piezoelétrica em pavimento de cruzamentos urbanos. Revista Eletrônica em Gestão, Educação e Tecnologia Ambiental, v. 24, e39. DOI: https://doi.org/10.5902/2236117045212
Roshani, H.; P. Jagtap; S. Dessouky et al. (2018) Theoretical and experimental evaluation of two roadway piezoelectric-based energy harvesting prototypes. Journal of Materials in Civil Engineering, v. 30, n. 2, p. 04017264. DOI: 10.1061/(ASCE) MT.1943-5533.0002112. DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0002112
Song, Y.; C.H. Yang; S.K. Hong et al. (2016) Road energy harvester designed as a macro-power source using the piezoelectric effect. International Journal of Hydrogen Energy, v. 41, n. 29, p. 12563-12568. DOI: 10.1016/j.ijhydene.2016.04.149. DOI: https://doi.org/10.1016/j.ijhydene.2016.04.149
Triunfo Concepa (2018) Estratégias de Eficiência Energética em Praças de Pedágio Rodoviários. Porto Alegre: ANTT.
Vale, A.C.F. (2020) Analisys of the Evolution of Permanent Deformation of Asphalt Mixtures Using the Stress Sweep Rutting (SSR) Test Methodology. Dissertação (mestrado). Universidade Federal do Ceará, Fortaleza.
Wang, H. e C. Sun (2016) Finite element analysis on a square canister piezoelectric energy harvester in asphalt pavement. World Journal of Engineering and Technology, v. 4, n. 2, p. 361-373. DOI: 10.4236/wjet.2016.42035. DOI: https://doi.org/10.4236/wjet.2016.42035
Wang, S.; C. Wang; G. Yu et al. (2020) Development and performance of a piezoelectric energy conversion structure applied in pavement. Energy Conversion and Management, v. 207, p. 112571. DOI: 10.1016/j.enconman.2020.112571. DOI: https://doi.org/10.1016/j.enconman.2020.112571
Wang, S.; C. Wang; H. Yuan et al. (2023) Size effect of piezoelectric energy harvester for road with high efficiency electrical properties. Applied Energy, v. 330, p. 120379. DOI: 10.1016/j.apenergy.2022.120379. DOI: https://doi.org/10.1016/j.apenergy.2022.120379
Yao, L.; H.D. Zhao; Z.Y. Dong et al. (2011) Laboratory testing of piezoelectric bridge transducers for asphalt pavement energy harvesting. Key Engineering Materials, v. 492, p. 172-175. DOI: 10.4028/www.scientific.net/KEM.492.172. DOI: https://doi.org/10.4028/www.scientific.net/KEM.492.172
Yoder, E.J. e M.W. Witczak (1975) Principles of Pavement Design (2nd ed., 711 p.). New York: John Wiley & Sons. DOI: 10.1002/9780470172919. DOI: https://doi.org/10.1002/9780470172919
Yuan, H.; J. Liu; C. Wang et al. (2024) Optimization of piezoelectric device with both mechanical and electrical properties for power supply of road sensors. Applied Energy, v. 364, p. 123113. DOI: 10.1016/j.apenergy.2024.123113. DOI: https://doi.org/10.1016/j.apenergy.2024.123113
Zhang, W.; G. Ding e J. Wang (2021) Road energy harvesting characteristics of damage-resistant stacked piezoelectric ceramics. Ferroelectrics, v. 570, n. 1, p. 37-56. DOI: 10.1080/00150193.2020.1839254. DOI: https://doi.org/10.1080/00150193.2020.1839254
Zhu, L.; R. Chen e X. Liu (2012) Theoretical analyses of the electronic breaker switching method for nonlinear energy harvesting interfaces. Journal of Intelligent Material Systems and Structures, v. 23, n. 4, p. 441-451. DOI: 10.1177/1045389X11435433. DOI: https://doi.org/10.1177/1045389X11435433
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Bruno Cavalcante Mota, Suelly Helena de Araújo Barroso
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who submit papers for publication by TRANSPORTES agree to the following terms:
- Authors retain copyright and grant TRANSPORTES the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors may enter into separate, additional contractual arrangements for the non-exclusive distribution of this journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in TRANSPORTES.
- Authors are allowed and encouraged to post their work online (e.g., in institutional repositories or on their website) after publication of the article. Authors are encouraged to use links to TRANSPORTES (e.g., DOIs or direct links) when posting the article online, as TRANSPORTES is freely available to all readers.
- Authors have secured all necessary clearances and written permissions to published the work and grant copyright under the terms of this agreement. Furthermore, the authors assume full responsibility for any copyright infringements related to the article, exonerating ANPET and TRANSPORTES of any responsibility regarding copyright infringement.
- Authors assume full responsibility for the contents of the article submitted for review, including all necessary clearances for divulgation of data and results, exonerating ANPET and TRANSPORTES of any responsibility regarding to this aspect.