Synthetic population generation procedure based on Brazilian data
DOI:
https://doi.org/10.58922/transportes.v32i3.2617Keywords:
Synthetic population. Synthetic population generators. Population synthesizers. Entropy maximization.Abstract
This paper presents both a population synthesizer adapted to Brazil and its application to the Metropolitan Area of São Paulo (RMSP). Synthetic populations are used in disaggregate travel demand models; they result from estimating unknown information at a fine geographical level based on available aggregated information and (a sample) of microdata, both made available by the Census. Considering the theoretical approaches and the availability of codes, we selected PopulationSim, synthesizer, belonging to the category of synthetic reconstruction synthesizers. An extension, called PopulationSimBR, was developed to facilitate the use of this synthesizer in different regions of Brazil. OD survey data files were used in addition to Census data for the application to the RMSP. Validation metrics show that results compare favorably to those reported in the literature and suggest that PopulationSim can be used in Brazil, as well as the synthetic population generated for the RMSP.
Downloads
References
ActivitySim (2020) ActivitySim: An open platform for activity-based travel modeling. Disponível em: <https://activitysim.github. io/> (acesso em 13/06/2024).
Ajauskas, R. (2021a) Procedimento para geração de populações sintéticas com base em dados disponíveis no Brasil. Dissertação (mestrado). Universidade de São Paulo. São Paulo. DOI: 10.11606/D.3.2021.tde-04112021-120207. DOI: https://doi.org/10.11606/D.3.2021.tde-04112021-120207
Ajauskas, R. (2021b) Documentação PopulationSimBR: a extensão do PopulationSim para o Brasil. Disponível em: (acesso em 13/06/2024).
Ajauskas, R. e O. Strambi (2019) Procedimentos para geração de populações sintéticas aplicada à modelagem de transportes: uma revisão dos métodos de reconstrução sintética. In 33º Congresso de Pesquisa e Ensino em Transporte da ANPET. Balneário Camboriú: ANPET, p. 25–37.
Bar-Gera, H.; K.C. Konduri; B. Sana et al. (2009) Estimating survey weights with multiple constraints using entropy optimization methods. In 88th Annual Meeting of the Transportation Research Board, Washington D.C., Estados Unidos: Transportation Research Board, p. 09–1354.
Barthelemy, J. e P.L. Toint (2013) Synthetic population generation without a sample, Transportation Science, v. 47, n. 2, p. 266-79. DOI: 10.1287/trsc.1120.0408. DOI: https://doi.org/10.1287/trsc.1120.0408
Beckman, R.; K. Baggerly e M.D. McKay (1996) Creating synthetic baseline populations, Transportation Research Part A, Policy and Practice, v. 30, n. 6, p. 415-29. DOI: 10.1016/0965-8564(96)00004-3. DOI: https://doi.org/10.1016/0965-8564(96)00004-3
Birkin, M. e M. Clarke (1988) SYNTHESIS—a synthetic spatial information system for urban and regional analysis: methods and examples, Environment & Planning A, v. 20, n. 12, p. 1645-71. DOI: 10.1068/a201645. DOI: https://doi.org/10.1068/a201645
Farooq, B.; M. Bierlaire; R. Hurtubia et al. (2013) Simulation based population synthesis, Transportation Research Part B: Methodological, v. 58, p. 243-63. DOI: 10.1016/j.trb.2013.09.012. DOI: https://doi.org/10.1016/j.trb.2013.09.012
IBGE (2010) Censo 2010. Disponível em: <https://censo2010.ibge.gov.br/> (acesso em 13/06/2024).
Konduri, K.; D. You; V.M. Garikapati et al. (2016) Application of an enhanced population synthesis model that accommodates controls at multiple geographic resolutions. In Proceedings of the 95th Annual Meeting of the Transportation Research Board (Washington, DC, USA). Transportation Research Board, p. 10–14.
Lee, D. H.; Y. Fu (2011). Cross-entropy optimization model for population synthesis in activity-based microsimulation models. Transportation Research Record, v. 2255, n. 1, p. 20-27. DOI: https://doi.org/10.3141/2255-03
Lim, P.P. (2020) Population synthesis for travel demand modeling in Australian capital cities. Tese (doutorado). Institute for Social Science Research, University of Queensland, Queensland, DOI: 10.14264/uql.2020.822. DOI: https://doi.org/10.14264/uql.2020.822
MARG (2016) PopGen: Synthetic Population Generator. Mobility Analytics Research Group. Disponível em: <http://www.mobilityanalytics. org/popgen.html> (acesso em 13/06/2024).
Miyamoto, K.; N. Sugiki; N. Otani et al. (2010) Agent-based estimation method of household microdata for base year in land use microsimulation. In 89th TRB Meeting Compendium of Papers. Washington D.C.: Transportation Research Board.
Moreno, A. e R. Moeckel (2018) Population synthesis handling three geographical resolutions, ISPRS International Journal of Geo- Information, v. 7, n. 5, p. 174. DOI: 10.3390/ijgi7050174. DOI: https://doi.org/10.3390/ijgi7050174
Müller, K. (2017) A generalized approach to population synthesis. Tese (doutorado). ETH Zurich, Zurich. DOI: 10.3929/ethz-b-000171586.
Müller, K., e Axhausen, K. W. (2010) Population synthesis for microsimulation: state of the art. Arbeitsberichte Verkehrs-und Raumplanung, v. 638, p. 1-14.
Paul, B.M.; J. Doyle; B. Stabler et al. (2018) Multi-level population synthesis using entropy maximization-based simultaneous list balancing (No. 18-03886). In 97th Annual Meeting of the Transportation Research Board. Washington D.C.: Transportation Research Board.
Pianucci, M.N. (2016) Uma proposta para a obtenção da população sintética através de dados agregados para modelagem de geração de viagens por domicílio. Tese (Doutorado). Universidade de São Paulo, São Carlos. DOI: 10.11606/T.18.2016. tde-24102016-154347.
PopulationSim (2020) PopulationSim 0.5.1. Disponível em: <https://activitysim.github.io/populationsim/> (acesso em 31/07/2024)
Ramadan, O.E. e V.P. Sisiopiku (2019) A critical review on population synthesis for activity-and agent-based transportation models. In Transportation Systems Analysis and Assessment. IntechOpen. DOI: 10.5772/intechopen.86307. DOI: https://doi.org/10.5772/intechopen.86307
Ribeiro, R.A. (2011) Modelo baseado em agentes para estimar a geração e a distribuição de viagens intraurbanas. Tese (Doutorado). Universidade de São Paulo, São Carlos. DOI: 10.11606/T.18.2011.tde-31012012-081352 DOI: https://doi.org/10.11606/T.18.2011.tde-31012012-081352
RSG (2017) PopulationSim Specification. Disponível em: <https://activitysim.github.io/populationsim/docs.html>. (acesso em 13/06/2024).
Sallard, A.; Balać, M.; Hörl, S. (2020). A synthetic population for the greater São Paulo metropolitan region. Arbeitsberichte Verkehrs-und Raumplanung, v. 1545.
Smith, L., R. Beckman e K. Baggerly (1995) TRANSIMS: Transportation analysis and simulation system. New Mexico: Los Alamos National Lab. DOI: 10.2172/88648. DOI: https://doi.org/10.2172/88648
Sun, L.; A. Erath e C. Ming (2018) A hierarchical mixture modeling framework for population synthesis, Transportation Research Part B: Methodological, v. 114, p. 199. DOI: 10.1016/j.trb.2018.06.002. DOI: https://doi.org/10.1016/j.trb.2018.06.002
Voas, D. e P. Williamson (2000) An evaluation of the combinatorial optimisation approach to the creation of synthetic microdata, International Journal of Population Geography, v. 6, n. 5, p. 349-66. DOI: 10.1002/1099-1220(200009/10)6:5<349::AID-IJPG196>3.0.CO;2-5. DOI: https://doi.org/10.1002/1099-1220(200009/10)6:5<349::AID-IJPG196>3.0.CO;2-5
Vovsha, P.; J.E. Hicks; B.M. Paul et al. (2015) New features of population synthesis. In 94th Annual Meeting of the Transportation Research Board, Washington D.C., Estados Unidos: Transportation Research Board, p. 15–5343.
Ye, X.; K. Konduri; R.M. Pendyala et al. (2009) A methodology to match distributions of both household and person attributes in the generation of synthetic populations. In 88th Annual Meeting of the Transportation Research Board. Washington D.C., Estados Unidos: Transportation Research Board.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Rodrigo Ajauskas, Orlando Strambi

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who submit papers for publication by TRANSPORTES agree to the following terms:
- The authors retain the copyright and grant Transportes the right of first publication of the manuscript, without any financial charge, and waive any other remuneration for its publication by ANPET.
- Upon publication by Transportes, the manuscript is automatically licensed under the Creative Commons License CC BY 4.0 license. This license permits the work to be shared with proper attribution to the authors and its original publication in this journal.
- Authors are authorized to enter into additional separate contracts for the non-exclusive distribution of the version of the manuscript published in this journal (e.g., publishing in an institutional repository or as a book chapter), with recognition of the initial publication in this journal, provided that such a contract does not imply an endorsement of the content of the manuscript or the new medium by ANPET.
- Authors are permitted and encouraged to publish and distribute their work online (e.g., in institutional repositories or on their personal websites) after the editorial process is complete. As Transportes provides open access to all published issues, authors are encouraged to use links to the DOI of their article in these cases.
- Authors guarantee that they have obtained the necessary authorization from their employers for the transfer of rights under this agreement, if these employers hold any copyright over the manuscript. Additionally, authors assume all responsibility for any copyright infringements by these employers, releasing ANPET and Transportes from any responsibility in this regard.
- Authors assume full responsibility for the content of the manuscript, including the necessary and appropriate authorizations for the disclosure of collected data and obtained results, releasing ANPET and Transportes from any responsibility in this regard.