Factors related to highway crash severity in Brazil through a multinomial logistic regression model
DOI:
https://doi.org/10.14295/transportes.v30i1.2566Keywords:
Road transportation, Injury severity, Statistical learning, Highway crashes, Traffic safetyAbstract
Reducing the number of deaths by road crashes is an important priority for many countries around the world. Although focusing on the occurrence of crashes can provide safety policies that help reduce its numbers, studying their severity can provide different measures that may help further reduce the number of deaths by focusing on the most severe problems first. In this paper, a multinomial logistic regression model is fitted to nationwide highway crash data in Brazil from 2017 to 2019 to identify and estimate the associated factors to crash severity. Severity is classified as without injury, with injured victims or with fatal victims. Amongst other observations, results indicate that pedestrian involvement in highway crashes increase dramatically their severity. Also, conditions that favor greater speeds (clear weather, times when there are fewer vehicles on the road) are also related to an increase in crash severity, pointing to a proportional relation with traffic fluidity. Moreover, some observed limitations on the data may indicate that Brazil would benefit greatly from national crash records standards and unified databases, especially crossmatching crash reports with health data.
Downloads
References
Akaike, H. (1974) A new look at the statistical model identification. IEEE Transactions on Automatic Control, v. 19, n.6, p. 716–723. DOI:10.1109/TAC.1974.1100705.
Almeida, R. L. F. de; Bezerra Filho, J. G.; Braga, J. U.; Magalhães, F. B.; Macedo, M. C. M. e Silva, K. A.. (2013) Man, road and vehicle: risk factors associated with the severity of traffic accidents. Revista de Saúde Pública, v.47, n.4, p. 718–731. DOI:10.1590/S0034-8910.2013047003657.
Andrade, F. R. e Antunes, J. L. F. (2019) Trends in the number of traffic accident victims on Brazil’s federal highways before and after the start of the Decade of Action for Road Safety. Cadernos de Saude Publica, v.35, n.8, p. 1–11. DOI:10.1590/0102-311X00250218.
Barroso Jr., G. T.; Bertho, A. C. S. e Veiga, A. de C. (2019) A letalidade dos acidentes de trânsito nas rodovias federais brasileiras. Revista Brasileira de Estudos de População, v.36, p. 1–22. DOI:10.20947/S0102-3098a0074.
Brasil (2019) Boletim Estatístico. Brasília, DF: Confederação Nacional dos Transportes. Disponível em: <https://www.cnt.org.br/boletins> (acesso em 16/07/2021).
Brasil (2020) Acidentes. Brasília, DF: Polícia Rodoviária Federal. Disponível em: <https://www.gov.br/prf/pt-br/acesso-a-informacao/dados-abertos/dados-abertos-acidentes> (acesso em 16/07/2021).
van Buuren, S. e Fredriks, M. (2001) Worm plot: A simple diagnostic device for modelling growth reference curves. Statistics in Medicine, v.20, n.8, p. 1259–1277. DOI:10.1002/sim.746.
Carrasco, C. E.; Godinho, M.; Barros, M. B. A; Rizoli, S. e Fraga, G. P. (2012) Fatal motorcycle crashes: A serious public health problem in Brazil. World Journal of Emergency Surgery, v.7, n.S5, p. 7–10. DOI:10.1186/1749-7922-7-S1-S5.
Çelik, A. K. e Oktay, E. (2014) A multinomial logit analysis of risk factors influencing road traffic injury severities in the Erzurum and Kars Provinces of Turkey. Accident Analysis & Prevention, v.72, p. 66–77. DOI:10.1016/j.aap.2014.06.010.
Chen, Z. e Fan, W. (D.) (2019) A multinomial logit model of pedestrian-vehicle crash severity in North Carolina. International Journal of Transportation Science and Technology, v.8, n.1, p. 43–52. DOI:10.1016/j.ijtst.2018.10.001.
Cunto, F. J. C. e Ferreira, S. (2017) An analysis of the injury severity of motorcycle crashes in Brazil using mixed ordered response models. Journal of Transportation Safety and Security, v.9, p. 33–46. DOI: 10.1080/19439962.2016.1162891.
Darma, Y., Karim, M. R. e Abdullah, S. (2017) An analysis of Malaysia road traffic death distribution by road environment. Sādhanā, v.42, n.9, p. 1605–1615. DOI:10.1007/s12046-017-0694-9.
Dunn, P. K. e Smyth, G. K. (1996) Randomized Quantile Residuals. Journal of Computational and Graphical Statistics, v.5, n.3, p. 236. DOI:10.2307/1390802.
Evans, L. (2004) Traffic Safety. Blooming Hills: Science Serving Society.
Girotto, E. et al. (2016) Professional experience and traffic accidents/near-miss accidents among truck drivers. Accident Analysis and Prevention, v.95, p. 299–304. DOI:10.1016/j.aap.2016.07.004.
Hordofa, G. G. ; Assehid, S. ; Girma, A. e Weldemarium, T. D. (2018) Prevalence of fatality and associated factors of road traffic accidents among victims reported to Burayu town police stations, between 2010 and 2015, Ethiopia. Journal of Transport & Health, v.10, p. 186–193. DOI:10.1016/j.jth.2018.06.007.
Hosmer, D. W. e Lemeshow, S. (2000) Applied Logistic Regression (2ª ed.) Hoboken: John Wiley & Sons, Inc.
International Transport Forum (2016) Zero Road Deaths and Serious Injuries. Paris: OECD Publishing. DOI:10.1787/9789282108055-en.
Iqbal, A.; ur Rehman, Z.; Ali, S.; Ullah, K. e Ghani, U. (2020) Road traffic accident analysis and identification of black spot locations on highway. Civil Engineering Journal, v.6, n.12, p. 2448–2456. DOI:10.28991/cej-2020-03091629.
Mohanty, M. e Gupta, A. (2015) Factors affecting road crash modeling. Journal of Transport Literature, v.9, n.2, p. 15–19. DOI:10.1590/2238-1031.jtl.v9n2a3.
Morais Neto, O. L. M. ; Andrade, A. L.; Guimarães, R. A.; Mandacarú, P. M. P. e Tobias, G. C. (2016) Regional disparities in road traffic injuries and their determinants in Brazil, 2013. International Journal for Equity in Health, v.15, n.1, p. 142. DOI:10.1186/s12939-016-0433-6.
Nakamura, L. R.; Rigby, R. A.; Stasinopoulos, D. M.; Leandro, R. A.; Villegas, C. e Pescim, R. R. (2017) Modelling location, scale and shape parameters of the Birnbaum-Saunders generalized t distribution. Journal of Data Science, v.15, n.2, p. 221–238. DOI: 10.6339/JDS.201704_15(2).0003
National Highway Traffic Safety Administration (2019) Fatality Analysis Reporting System (FARS) Analytical User ’s Manual, NHTSA. Washington. Disponível em: < https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812827> Data de acesso: 19/07/2021.
Rakauskas, M. E., Ward, N. J. e Gerberich, S. G. (2009) Identification of differences between rural and urban safety cultures. Accident Analysis & Prevention, v.41, n.5, p. 931–937. DOI:10.1016/j.aap.2009.05.008.
Rigby, R. A.; Stasinopoulos, M. D.; Heller, G. Z.; Bastiani, F. D. (2019) Distributions for Modeling Location, Scale, and Shape (1ª ed.) Nova York, NY: Chapman and Hall/CRC. DOI:10.1201/9780429298547.
Righetto, A. J.; Ramires, T. G.; Nakamura, L. R.; Castanho, P. L. D. B.; Faes, C. e Savian, T. V. (2019) Predicting weed invasion in a sugarcane cultivar using multispectral image. Journal of Applied Statistics, v.46, n.1, p. 1–12. DOI: 10.1080/02664763.2018.1450362.
Savolainen, P. e Mannering, F. L. (2007) Probabilistic models of motorcyclists’ injury severities in single- and multi-vehicle crashes. Accident Analysis and Prevention, v.39, n.5, p. 955–963. DOI:10.1016/j.aap.2006.12.016.
Savolainen, P. T.; Mannering, F. L.; Lord, D. e Quddus, M. A;(2011) The statistical analysis of highway crash-injury severities: A review and assessment of methodological alternatives. Accident Analysis and Prevention, v.43, n.5, p. 1666–1676. DOI:10.1016/j.aap.2011.03.025.
Shakya, R. e Marsani, A. (2017) Using logistic regression to estimate the influence of accident factors on accident severity in Kathmandy Valley. Proceedings of IOE Graduate Conference, 2017, Lalitpur, Nepal: Institute of Engineering, Tribhuvan University, p. 311–324.
Shankar, V. e Mannering, F. (1996) An exploratory multinomial logit analysis of single-vehicle motorcycle accident severity. Journal of Safety Research, v.27, n.3, p. 183–194. DOI:10.1016/0022-4375(96)00010-2.
Souza, C. A. M.; Bahia, C. A. e Constantino, P. (2016) Analysis of factors associated with traffic accidents of cyclists attended in Brazilian state capitals. Ciencia e Saude Coletiva, v.21, n.12, p. 3683–3690. DOI:10.1590/1413-812320152112.24152016.
Stasinopoulos, D. M. e Rigby, R. A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, v.23, n.7, p. 1–46. DOI:10.18637/jss.v023.i07.
Stasinopoulos, M. D.; Rigby, R. A; Heller, G. Z.; Voudouris, V e Bastiani, F. de (2017) Flexible Regression and Smoothing: Using GAMLSS in R (1ª ed.) Boca Raton: CRC Press.
Tay, R.; Choi, J., Kattan, L e Khan, A. (2011) A multinomial logit model of pedestrian-vehicle crash severity. International Journal of Sustainable Transportation, v.5, n.4, p. 233–249. DOI:10.1080/15568318.2010.497547.
The R Foundation (2021) R: The R project for statistical computing. Disponível em: https://www.r-project.org/. Data de acesso: 19/07/2021.
Wang, D., Liu, Q; Ma, L.; Zhang, Y. e Cong, H.(2019) Road traffic accident severity analysis: A census-based study in China. Journal of Safety Research, v.70, p. 135–147. DOI:10.1016/j.jsr.2019.06.002.
Wang, J. e Cicchino, J. B. (2020) Fatal pedestrian crashes on interstates and other freeways in the United States. Journal of Safety Research, v. 74, p. 1–7. DOI:10.1016/j.jsr.2020.04.009.
World Health Organization (2018) Global Status Report on Road Safety. Geneva: WHO.
Wu, Q., Zhang, G.; Ci, Y.; Wu, L.; Tarefder, R. A. e Alcántara, A. “D.” (2016) Exploratory multinomial logit model–based driver injury severity analyses for teenage and adult drivers in intersection-related crashes. Traffic Injury Prevention, v.17, n.4, p. 413–422. DOI:10.1080/15389588.2015.1100722.
Zhang, G.; Yau, K. K. W; Zhang, X. e Li, Y.; (2016) Traffic accidents involving fatigue driving and their extent of casualties. Accident Analysis and Prevention. v.87, p. 34–42. DOI:10.1016/j.aap.2015.10.033.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Lucas Franceschi, Luciano Kaesemodel, Luciano Kaesemodel, Luciano Kaesemodel, Vera do Carmo Compasi Vargas, Vera do Carmo Compasi Vargas, Andréa Cristina Konrath, Luiz Ricardo Nakamura, Vera do Carmo Compasi Vargas, Andréa Cristina Konrath, Thiago Gentil Ramires, Camila Belleza Maciel Barreto, Andréa Cristina Konrath, Amir Mattar Valente, Luiz Ricardo Nakamura, Luiz Ricardo Nakamura, Thiago Gentil Ramires, Thiago Gentil Ramires, Camila Belleza Maciel Barreto, Camila Belleza Maciel Barreto, Amir Mattar Valente, Amir Mattar Valente
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who submit papers for publication by TRANSPORTES agree to the following terms:
- Authors retain copyright and grant TRANSPORTES the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors may enter into separate, additional contractual arrangements for the non-exclusive distribution of this journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in TRANSPORTES.
- Authors are allowed and encouraged to post their work online (e.g., in institutional repositories or on their website) after publication of the article. Authors are encouraged to use links to TRANSPORTES (e.g., DOIs or direct links) when posting the article online, as TRANSPORTES is freely available to all readers.
- Authors have secured all necessary clearances and written permissions to published the work and grant copyright under the terms of this agreement. Furthermore, the authors assume full responsibility for any copyright infringements related to the article, exonerating ANPET and TRANSPORTES of any responsibility regarding copyright infringement.
- Authors assume full responsibility for the contents of the article submitted for review, including all necessary clearances for divulgation of data and results, exonerating ANPET and TRANSPORTES of any responsibility regarding to this aspect.