Freight transport has historically inherited the passage transport framework and model assumptions. But, are all of them valid? This paper discusses one of the least discussed assumptions: the mutual exclusiveness of alternatives in the freight con-text. To do so, a Multiple Discrete Extreme Value Model (MDCEV) has been used to describe the behavior of grain consolidators with data from a stated preference survey that allowed multiple alternatives to be chosen simultaneously. The choice is de-scribed by the Travel Time, Lead Time, Price paid in the port and Freight Price. The MDCEV gave insights regarding the satiation behavior of the grain consolidators. This way, the MDCEV can become a valuable tool for modeling tactical and strategic choic-es.
DOI:
https://doi.org/10.14295/transportes.v28i4.2398Keywords:
MDCEV. Freight Transport. Choice modelling.Abstract
Freight transport has historically inherited the passage transport framework and model assumptions. But, are all of them valid? This paper discusses one of the least discussed assumptions: the mutual exclusiveness of alternatives in the freight context. To do so, a Multiple Discrete Extreme Value Model (MDCEV) has been used to describe the behavior of grain consolidators with data from a stated preference survey that allowed multiple alternatives to be chosen simultaneously. The choice is described by the Travel Time, Lead Time, Price paid in the port and Freight Price. The MDCEV gave insights regarding the satiation behavior of the grain consolidators. This way, the MDCEV can become a valuable tool for modeling tactical and strategic choices.Downloads
References
Abdelwahab, W. M., e Sargious, M. (1992) Modelling the Demand for Freight Transport: A New Approach. Journal of Transport Economics and Policy, 26(1), 49–70. doi: 10.2307/20052965
Ahn, J., Jeong, G., e Kim, Y. (2008) A forecast of household ownership and use of alternative fuel vehicles: A multiple discrete-continuous choice approach. Energy Economics, 30(5), 2091–2104. DOI: 10.1016/j.eneco.2007.10.003
Arunotayanun, K., e Polak, J. W. (2009) Accounting for Supply Chain Structures in Modelling Freight Mode Choice Behaviour. European Transport Conference, 44(0), 1–19.
Astroza, S., Bhat, P. C., Bhat, C. R., Pendyala, R. M., e Garikapati, V. M. (2018) Understanding activity engagement across weekdays and weekend days: A multivariate multiple discrete-continuous modeling approach. Journal of Choice Modelling, 28(May), 56–70. DOI: 10.1016/j.jocm.2018.05.004
Bhat, C. R. (2005) A multiple discrete-continuous extreme value model: Formulation and application to discretionary time-use decisions. Transportation Research Part B: Methodological, 39(8), 679–707. doi:10.1016/j.trb.2004.08.003
Bhat, C. R. (2008) The multiple discrete-continuous extreme value (MDCEV) model: Role of utility function parameters, identification considerations, and model extensions. Transportation Research Part B: Methodological, 42(3), 274–303. doi:10.1016/j.trb.2007.06.002
Bhat, C. R. (2018) A new flexible multiple discrete–continuous extreme value (MDCEV) choice model. Transportation Research Part B: Methodological, 110, 261–279. doi:10.1016/j.trb.2018.02.011
Bhat, C. R., e Sen, S. (2006) Household vehicle type holdings and usage: An application of the multiple discrete-continuous extreme value (MDCEV) model. Transportation Research Part B: Methodological, 40(1), 35–53. doi:10.1016/j.trb.2005.01.003
Bhat, C. R., Srinivasan, S., e Sen, S. (2006) A joint model for the perfect and imperfect substitute goods case: Application to activity time-use decisions. Transportation Research Part B: Methodological, 40(10), 827–850. doi:10.1016/j.trb.2005.08.004
Binh, N. T. (2017) A Multi-Stage Impact Assessment Method for Freight Transport Management Measures. Technische Universität Darmstadt.
Bonnet, C., e Bouamra-Mechemache, Z. (2016) Organic Label, Bargaining Power, and Profit-sharing in the French Fluid Milk Market. American Journal of Agricultural Economics, 98(1), 113–133. DOI: 0.1093/ajae/aav047
Brooks, M. R., e Trifts, V. (2008) Short sea shipping in North America: Understanding the requirements of Atlantic Canadian shippers. Maritime Policy and Management, 35(2), 145–158. DOI: 10.1080/03088830801956805
Calastri, C., Hess, S., Choudhury, C., Daly, A., e Gabrielli, L. (2017) Mode choice with latent availability and consideration: Theory and a case study. Transportation Research Part B: Methodological, 123, 374–385. doi:10.1016/j.trb.2017.06.016
Chow, J. Y. J., Yang, C. H., e Regan, A. C. (2010) State-of-the art of freight forecast modeling: Lessons learned and the road ahead. Transportation, 37(6), 1011–1030. doi:10.1007/s11116-010-9281-1
Copperman, R. B., e Bhat, C. R. (2007) An analysis of the determinants of children’s weekend physical activity participation. Transportation, 34(1), 67–87. doi:10.1007/s11116-006-0005-5
Daly, A., Hess, S., e Train, K. (2012) Assuring finite moments for willingness to pay in random coefficient models. Transportation, 39(1), 19–31. doi:10.1007/s11116-011-9331-3
Danielis, R., e Marcucci, E. (2007) Attribute cut-offs in freight service selection. Transportation Research Part E: Logistics and Transportation Review, 43(5), 506–515. doi:10.1016/j.tre.2005.10.002
de Bok, M., e Tavasszy, L. (2018) An empirical agent-based simulation system for urban goods transport (MASS-GT). Procedia Computer Science, 130, 126–133. doi:10.1016/j.procs.2018.04.021
de Jong, G., e Ben-Akiva, M. (2007) A micro-simulation model of shipment size and transport chain choice. Transportation Research Part B: Methodological, 41(9), 950–965. doi:10.1016/j.trb.2007.05.002
de Jong, G., Vierth, I., Tavasszy, L., e Ben-Akiva, M. (2013) Recent developments in national and international freight transport models within Europe. Transportation, 40(2), 347–371. doi:10.1007/s11116-012-9422-9
Ellison, R. B., Teye, C., e Hensher, D. A. (2017) Commodity-based heavy vehicle model for Greater Sydney. 5th International Choice Modelling Conference. Cape Town, South Africa.Disponível em: http://www.icmconference.org.uk/index.php/icmc/ICMC2017/paper/view/1226. Acessado em: 05/06/2019
Enam, A., Konduri, K. C., Eluru, N., e Ravulaparthy, S. (2018) Relationship between well-being and daily time use of elderly: evidence from the disabilities and use of time survey. Transportation, 45(6), 1783–1810. doi:10.1007/s11116-017-9821-z
Hendel, I. (1999) Estimating Multiple-Discrete Choice Models: An Application to Computerization Returns Author(s Estimating Multiple-Discrete Choice Models: An Application to Computerization Returns. Review of Economic Studies, 66(66), 423–446. doi:10.1111/1467-937X.00093
Hensher, D., e Figliozzi, M. A. (2007) Behavioural insights into the modelling of freight transportation and distribution systems. Transportation Research Part B: Methodological, 41(9), 921–923. doi:10.1016/j.trb.2007.04.002
Hess, S. e Palma, D. 2019; Apollo: a flexible, powerful and customisable freeware package for choice model estimation and application, Journal of Choice Modelling, Volume 32, September 2019, 100170, doi: 10.1016/j.jocm.2019.100170
Holguín-Veras, J. (2002) Revealed Preference Analysis of Commercial Vehicle Choice Process. Journal of Transportation Engineering, 128(August), 336–346,doi: 10.1061/(ASCE)0733-947X(2002)128:4(336).
Huh, S. Y., Lee, H., Shin, J., Lee, D., e Jang, J. (2018) Inter-fuel substitution path analysis of the korea cement industry. Renewable and Sustainable Energy Reviews, 82(June 2017), 4091–4099. doi:10.1016/j.rser.2017.10.065
Instituto Nacional de Tecnología Agropecuaria. (2009) Análisis de la cadena de soja en Argentina. Proyecto Específico 2742: Economía de las Cadenas Agroalimentarias y Agroindustriales, 119.Disponível em: https://inta.gob.ar/sites/default/files/script-tmp-cadena_soja.pdf. Acesso em: 04/02/2019
Jäggi, B., Weis, C., e Axhausen, K. W. (2013) Stated response and multiple discrete-continuous choice models: Analyses of residuals. Journal of Choice Modelling, 6, 44–59. doi:10.1016/j.jocm.2013.04.005
Jian, S., Rashidi, T. H., e Dixit, V. (2017) An analysis of carsharing vehicle choice and utilization patterns using multiple discrete-continuous extreme value (MDCEV) models. Transportation Research Part A: Policy and Practice, 103, 362–376. doi:10.1016/j.tra.2017.06.012
Johnson, D., e de Jong, G. (2011) Heterogeneous response to transport cost and time and model specification in freight mode and shipment size choice. International Choice Modelling Conference. disponível em: http://www.icmconference.org.uk/index.php/icmc/ICMC2011/paper/view/284. Acesso em 21/05/2019.
Khan, M., e Machemehl, R. (2017a) Commercial vehicles time of day choice behavior in urban areas. Transportation Research Part A: Policy and Practice, 102, 68–83. doi:10.1016/j.tra.2016.08.024
Khan, M., e Machemehl, R. (2017b) Analyzing tour chaining patterns of urban commercial vehicles. Transportation Research Part A: Policy and Practice, 102, 84–97. doi:10.1016/j.tra.2016.08.014
Larranaga, A. M., Arellana, J., e Senna, L. A. (2017) Encouraging intermodality: A stated preference analysis of freight mode choice in Rio Grande do Sul. Transportation Research Part A: Policy and Practice, 102, 202–211. doi:10.1016/j.tra.2016.10.028
Lu, H., Hess, S., Daly, A., e Rohr, C. (2017) Measuring the impact of alcohol multi-buy promotions on consumers’ purchase behaviour. Journal of Choice Modelling, 24(2014), 75–95. doi:10.1016/j.jocm.2016.05.001
McFadden, D. (1973) Conditional logit analysis of qualitative choice behavior. Frontiers in Econometrics. doi:10.1108/eb028592
Mcfaden, D., Winston, C., e Boersch-supan, A. (1986) Joint estimation of freight transportation decisions under non random sampling. Daugherty, A. (Ed.), Analytical Studies in Transport Economics (p. 137–157), Cambridge University Press.
Nogueira, Í. M., e Bertoncini, B. V. (2018) Proposta de método para modelar a geração de viagens intermunicipais de transporte de cargas a partir de dados secundários. 32 Congresso de Pesquisa e Ensino em Transporte da ANPET (p. 2467–2470). Gramado. Disponível em: http://146.164.5.73:30080/tempsite/anais/documentos/2018/Modelos%20e%20Tecnicas%20de%20Planejamento%20de%20Transportes/Modelagem%20Aplicada%20ao%20Transporte%20de%20Carga/5_168_RT.pdf. Acesso em: 07/03/2019
Nurul Habib, K. M., e Miller, E. J. (2008) Modelling daily activity program generation considering within-day and day-to-day dynamics in activity-travel behaviour. Transportation, 35(4), 467–484. doi:10.1007/s11116-008-9166-8
Paleti, R., Copperman, R. B., e Bhat, C. R. (2011) An empirical analysis of children’s after school out-of-home activity-location engagement patterns and time allocation. Transportation, 38(2), 273–303. doi:10.1007/s11116-010-9300-2
Pourabdollahi, Z., Karimi, B., e Mohammadian, A. (2013) Joint Model of Freight Mode and Shipment Size Choice. Transportation Research Record: Journal of the Transportation Research Board, 2378(312), 84–91. doi:10.3141/2378-09
Rashidi, T. H., e Roorda, M. J. (2018) A business establishment fleet ownership and composition model. Transportation, 45(3), 971–987. doi:10.1007/s11116-017-9758-2
Rich, J., Holmblad, P. M., e Hansen, C. O. (2009) A weighted logit freight mode-choice model. Transportation Research Part E: Logistics and Transportation Review, 45(6), 1006–1019. doi:10.1016/j.tre.2009.02.001
Rose, J. M., e Bliemer, Mi. C. J. (2009) Constructing efficient stated choice experimental designs. Transport Reviews, 29(5), 587–617. doi:10.1080/01441640902827623
Shin, J., Hong, J., Jeong, G., e Lee, J. (2012) Impact of electric vehicles on existing car usage: A mixed multiple discrete-continuous extreme value model approach. Transportation Research Part D: Transport and Environment, 17(2), 138–144. doi:10.1016/j.trd.2011.10.004
Sikder, S., e Pinjari, A. R. (2013) The benefits of allowing heteroscedastic stochastic distributions in multiple discrete-continuous choice models. Journal of Choice Modelling, 9(1), 39–56. doi:10.1016/j.jocm.2013.12.003
Spissu, E., Pinjari, A. R., Bhat, C. R., Pendyala, R. M., e Axhausen, K. W. (2009) An analysis of weekly out-of-home discretionary activity participation and time-use behavior. Transportation, 36(5), 483–510. doi:10.1007/s11116-009-9200-5
Tanner, R., e Bolduc, D. (2014) The Multiple Discrete-continuous Extreme Value Model (MDCEV) with Fixed Costs. Procedia - Social and Behavioral Sciences, 111, 390–399. doi:10.1016/j.sbspro.2014.01.072
Tapia, R. J., de Jong, G., Larranaga, A. M., e Cybis Bettella, H. B. (2019) Exploring multiple discreteness in freight transport . A Multiple Discrete Extreme Value Model application for grain consolidators in Argentina. TRB 2019 Annual Meeting (p. 1–16).
Tapia, R. J., dos Santos Senna, L. A., Larranaga, A. M., e Cybis, H. B. B. (2019) Joint mode and port choice for soy production in Buenos Aires province, Argentina. Transportation Research Part E: Logistics and Transportation Review, 121, 100–118. doi:10.1016/j.tre.2018.04.010
Tavasszy, L., e de Jong, G. (2014) Modelling Freight Transport. (L. Tavasszy & G. de Jong, Eds)Modelling Freight Transport. Elsevier Inc.( ISBN: 9780124104006)
Train, K. (2003) Discrete Choice Methods with Simulation. Cambridge University Press, 1–388. doi:10.1017/CBO9780511753930
Vellay, C., e de Jong, G. (2003) A simultaneous SP/RP Analysis of Mode Choice in Freight Transport in the Region Nord-Pas-de-Calais.
Von Haefen, R. H., e Phaneuf, D. J. (2005) Kuhn-Tucker Demand System Approaches To Non-Market Valuation. Applications of Simulation Methods in Enviromental and Resource Economics. Spri.doi: 10.1007/1-4020-3684-1_8
Von Haefen, R. H., Phaneuf, D. J., e Parsons, G. R. (2004) Estimation and Welfare Analysis With Large Demand Systems. Journal of Business and Economic Statistics, 22(2), 194–205. doi:10.1198/073500104000000082
Windisch, E., De Jong, G., Van Nes, R., e Hoogendoom, S. P. (2010) A Disagregate freight transport model of transport chain and shipment size choice. European Transport Conference, (Abdelwahab 1998).Disponível em: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.850.9821&rep=rep1&type=pdf. Acesso em 08/01/2019
Yu, H., Zeng, A. Z., e Zhao, L. (2009) Single or dual sourcing: decision-making in the presence of supply chain disruption risks. Omega, 37(4), 788–800. doi:10.1016/j.omega.2008.05.006
Downloads
Published
How to Cite
Issue
Section
License
Authors who submit papers for publication by TRANSPORTES agree to the following terms:
- Authors retain copyright and grant TRANSPORTES the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors may enter into separate, additional contractual arrangements for the non-exclusive distribution of this journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in TRANSPORTES.
- Authors are allowed and encouraged to post their work online (e.g., in institutional repositories or on their website) after publication of the article. Authors are encouraged to use links to TRANSPORTES (e.g., DOIs or direct links) when posting the article online, as TRANSPORTES is freely available to all readers.
- Authors have secured all necessary clearances and written permissions to published the work and grant copyright under the terms of this agreement. Furthermore, the authors assume full responsibility for any copyright infringements related to the article, exonerating ANPET and TRANSPORTES of any responsibility regarding copyright infringement.
- Authors assume full responsibility for the contents of the article submitted for review, including all necessary clearances for divulgation of data and results, exonerating ANPET and TRANSPORTES of any responsibility regarding to this aspect.