The use of pavement for energy generation and sustainable development of smart cities
DOI:
https://doi.org/10.14295/transportes.v29i2.2380Keywords:
Piezoelectricity, PZT, Simulations, Mechanical energyAbstract
The road pavement makes it possible to obtain electrical energy by transforming the mechanical energy transmitted by the vehicles to his structure. In this context, this article was developed with the objective of investigating the road surface as a mechanism of energy generation, by using piezoelectricity, to contribute to the reduction of the environmental impact relative to energy. Multiphysical simulations were performed in seven geometries of piezoelectric cells, in a stationary character, and in a prototype with an arrangement of four cells of the one that presented the best results in the previous stage, in a dynamic character. Thus, it was verified that the cell thickness is the geometric property that most influences the electric potential generated. From the proposed prototype it would be possible to generate 306,37 MW of electric output per year. In addition, it’s suggested that sections of interstate highways, with high speed and traffic volume, and expressways would be good candidates for application of the piezoelectric system.
Downloads
References
ANTT (2018) Estratégias de eficiência energética em praças de pedágio rodoviário. Relatório Final de Pesquisa RDT, Agência Nacional de Transportes Terrestres, Triunfo | CONCEPA. Disponível em: <https://bityli.com/w2bj0>. (Acesso em 16/08/2021).
Andriopoulou, S. A. (2012) Review on energy harvesting from roads. Dissertação (mestrado). Faculdade de Arquitetura, Ciência do Transporte, Estradas e Engenharia Ferroviária, KTH Royal Institute of Technology. Suécia.
Antunes, E. de G.; M. N. de Sousa e M. N. da C. Schertel (2014) Piso que transforma energia mecânica em eletricidade. Universidade Federal do Rio Grande do Sul. Disponível em: < http://www.ufrgs.br/projenergia3/projetos/trabalhos-2014/trabalhos-2014-2/GRUPOH.pdf>. (Acesso em 18/01/2021).
CEARÁ (2010) Atlas Solarimétrico do Ceará. Fundação Cearense de Meteorologia e Recursos Hídricos - Funceme (Org.), Fortaleza.
CEARÁ (2018a) Estudo de Tendências de Longo Prazo: Ceará 2050. Estudos de Megatendências da Ey. Governo do Estado do Ceará.
CEARÁ (2018b) Projeto Ceará 2050 estudo setorial especial: recursos naturais e ecologia. Governo do Estado do Ceará.
COMSOL (2015) Optimizing the Power of a Piezoelectric Energy Harvester. Disponível em: <https://br.comsol.com/blogs/optimizing-the-power-of-a-piezoelectric-energy-harvester/>. (Acesso em 18/01/2021).
CONTRAN (2006) Resolução nº 210: limites de peso e dimensões para veículos que transitem por vias terrestres. Ministério das Cidades. Disponível em: <https://www.camara.leg.br/proposicoesWeb/prop_mostrarintegra?codteor=1608786>. (Acesso em 16/08/2021).
Cravo, L. da S. (2014) Geração de Energia nos Pavimentos Rodoviários. Dissertação (mestrado). Universidade de Coimbra, Coimbra.
Duarte, F. e A. Ferreira (2016) Sistema de geração de energia elétrica nos pavimentos rodoviários. Anais do 8º Congresso rodoviário português, Lisboa, p. 1-10.
Elkington, J. (1999) Cannibals with forks. New Society, Canadá.
EPE (2018) Consumo Anual de Energia Elétrica por classe. Empresa de Pesquisa Energética. Disponível em: <http://www.epe.gov.br/pt/publicacoes-dados-abertos/publicacoes/Consumo-Anual-de-Energia-Eletrica-por-classe-nacional>. (Acesso em 18/01/2021).
EPE (2019) Balanço Energético Nacional 2019: Ano base 2018. Empresa de Pesquisa Energética, Rio de Janeiro.
Kim, S.; J. Shen e M. Ahad (2015) Piezoelectric-Based Energy Harvesting Technology for Roadway Sustainability. International Journal of Applied Science and Technology, v. 5, n. 1, p. 20-25. Disponível em: <http://www.ijastnet.com/journals/Vol_5_No_1_February_2015/3.pdf>. (Acesso em 18/01/2021).
Medina, J. e L. M. G. da Motta (2015) Mecânica dos pavimentos (3ª ed.). Interciência, Rio de Janeiro.
Moure, A.; M. A. I. Rodríguez; S. H. Rueda; A. Gonzalo; F. R. Marcos; D. U. Cuadros; A. Pérez-Lepe e J. F. Fernández (2016) Feasible integration in asphalt of piezoelectric cymbals for vibration energy harvesting. Energy Conversion and Management, v. 112, p. 246-253. DOI: 10.1016/j.enconman.2016.01.030
Papagiannakis, A. T.; S. Dessouky; A. Montoya e H. Roshani (2016) Energy Harvesting from Roadways. Procedia Computer Science, v. 83, p.758-765. DOI: 10.1016/j.procs.2016.04.164
Roshani, H.; P. Jagtap; S. Dessouky; A. Montoya e A. T. Papagiannakis (2018) Theoretical and Experimental Evaluation of Two Roadway Piezoelectric-Based Energy Harvesting Prototypes. Journal of Materials in Civil Engineering, v. 30, n. 2, p.04017264-04017264. DOI: 10.1061/(ASCE)MT.1943-5533.0002112
Santos, V. C. (2014) Aplicação de Sistemas de Geração de Energia nos Pavimentos Rodoviários. Dissertação (mestrado). Universidade de Coimbra, Coimbra. Disponível em: <https://estudogeral.uc.pt/bitstream/10316/38607/1/Aplicacao%20de%20sistemas%20de%20geracao%20de%20energia%20nos%20pavimentos%20rodoviarios.pdf> (Acesso em 16/08/2021)
Xiong, H. (2014) Piezoelectric Energy Harvesting for Public Roadways. Dissertação (mestrado). Virginia Polytechnic Institute and State University, Blacksburg. Disponível em: <https://vtechworks.lib.vt.edu/bitstream/handle/10919/51361/Xiong_H_D_2015.pdf?sequence=1&isAllowed=y> (Acesso em 16/08/2021)
Yoder, E. J. e M. W. Wictzac (1975) Principles of Pavement Design. John Wiley and Sons, New York.
Zhao, H.; J. Yu e J. Ling (2010) Finite element analysis of Cymbal piezoelectric transducers for harvesting energy from asphalt pavement. Journal of the Ceramic Society of Japan. Tokyo, v. 118, n. 1382, p. 909-915. DOI: 10.2109/jcersj2.118.909
Zhao, H.; Y. Tao; Y. Niu e J. Ling (2014) Harvesting energy from asphalt pavement by piezoelectric generator. Journal of Wuhan University of Technology-mater. Sci. Ed., v. 29, n. 5, p. 933-937. DOI: 10.1007/s11595-014-1023-3
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Bruno Cavalcante Mota, Suelly Helena de Araújo Barroso
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who submit papers for publication by TRANSPORTES agree to the following terms:
- Authors retain copyright and grant TRANSPORTES the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors may enter into separate, additional contractual arrangements for the non-exclusive distribution of this journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in TRANSPORTES.
- Authors are allowed and encouraged to post their work online (e.g., in institutional repositories or on their website) after publication of the article. Authors are encouraged to use links to TRANSPORTES (e.g., DOIs or direct links) when posting the article online, as TRANSPORTES is freely available to all readers.
- Authors have secured all necessary clearances and written permissions to published the work and grant copyright under the terms of this agreement. Furthermore, the authors assume full responsibility for any copyright infringements related to the article, exonerating ANPET and TRANSPORTES of any responsibility regarding copyright infringement.
- Authors assume full responsibility for the contents of the article submitted for review, including all necessary clearances for divulgation of data and results, exonerating ANPET and TRANSPORTES of any responsibility regarding to this aspect.