The use of pavement for energy generation and sustainable development of smart cities
DOI:
https://doi.org/10.14295/transportes.v29i2.2380Keywords:
Piezoelectricity, PZT, Simulations, Mechanical energyAbstract
The road pavement makes it possible to obtain electrical energy by transforming the mechanical energy transmitted by the vehicles to his structure. In this context, this article was developed with the objective of investigating the road surface as a mechanism of energy generation, by using piezoelectricity, to contribute to the reduction of the environmental impact relative to energy. Multiphysical simulations were performed in seven geometries of piezoelectric cells, in a stationary character, and in a prototype with an arrangement of four cells of the one that presented the best results in the previous stage, in a dynamic character. Thus, it was verified that the cell thickness is the geometric property that most influences the electric potential generated. From the proposed prototype it would be possible to generate 306,37 MW of electric output per year. In addition, it’s suggested that sections of interstate highways, with high speed and traffic volume, and expressways would be good candidates for application of the piezoelectric system.
Downloads
References
ANTT (2018) Estratégias de eficiência energética em praças de pedágio rodoviário. Relatório Final de Pesquisa RDT, Agência Nacional de Transportes Terrestres, Triunfo | CONCEPA. Disponível em: <https://bityli.com/w2bj0>. (Acesso em 16/08/2021).
Andriopoulou, S. A. (2012) Review on energy harvesting from roads. Dissertação (mestrado). Faculdade de Arquitetura, Ciência do Transporte, Estradas e Engenharia Ferroviária, KTH Royal Institute of Technology. Suécia.
Antunes, E. de G.; M. N. de Sousa e M. N. da C. Schertel (2014) Piso que transforma energia mecânica em eletricidade. Universidade Federal do Rio Grande do Sul. Disponível em: < http://www.ufrgs.br/projenergia3/projetos/trabalhos-2014/trabalhos-2014-2/GRUPOH.pdf>. (Acesso em 18/01/2021).
CEARÁ (2010) Atlas Solarimétrico do Ceará. Fundação Cearense de Meteorologia e Recursos Hídricos - Funceme (Org.), Fortaleza.
CEARÁ (2018a) Estudo de Tendências de Longo Prazo: Ceará 2050. Estudos de Megatendências da Ey. Governo do Estado do Ceará.
CEARÁ (2018b) Projeto Ceará 2050 estudo setorial especial: recursos naturais e ecologia. Governo do Estado do Ceará.
COMSOL (2015) Optimizing the Power of a Piezoelectric Energy Harvester. Disponível em: <https://br.comsol.com/blogs/optimizing-the-power-of-a-piezoelectric-energy-harvester/>. (Acesso em 18/01/2021).
CONTRAN (2006) Resolução nº 210: limites de peso e dimensões para veículos que transitem por vias terrestres. Ministério das Cidades. Disponível em: <https://www.camara.leg.br/proposicoesWeb/prop_mostrarintegra?codteor=1608786>. (Acesso em 16/08/2021).
Cravo, L. da S. (2014) Geração de Energia nos Pavimentos Rodoviários. Dissertação (mestrado). Universidade de Coimbra, Coimbra.
Duarte, F. e A. Ferreira (2016) Sistema de geração de energia elétrica nos pavimentos rodoviários. Anais do 8º Congresso rodoviário português, Lisboa, p. 1-10.
Elkington, J. (1999) Cannibals with forks. New Society, Canadá.
EPE (2018) Consumo Anual de Energia Elétrica por classe. Empresa de Pesquisa Energética. Disponível em: <http://www.epe.gov.br/pt/publicacoes-dados-abertos/publicacoes/Consumo-Anual-de-Energia-Eletrica-por-classe-nacional>. (Acesso em 18/01/2021).
EPE (2019) Balanço Energético Nacional 2019: Ano base 2018. Empresa de Pesquisa Energética, Rio de Janeiro.
Kim, S.; J. Shen e M. Ahad (2015) Piezoelectric-Based Energy Harvesting Technology for Roadway Sustainability. International Journal of Applied Science and Technology, v. 5, n. 1, p. 20-25. Disponível em: <http://www.ijastnet.com/journals/Vol_5_No_1_February_2015/3.pdf>. (Acesso em 18/01/2021).
Medina, J. e L. M. G. da Motta (2015) Mecânica dos pavimentos (3ª ed.). Interciência, Rio de Janeiro.
Moure, A.; M. A. I. Rodríguez; S. H. Rueda; A. Gonzalo; F. R. Marcos; D. U. Cuadros; A. Pérez-Lepe e J. F. Fernández (2016) Feasible integration in asphalt of piezoelectric cymbals for vibration energy harvesting. Energy Conversion and Management, v. 112, p. 246-253. DOI: 10.1016/j.enconman.2016.01.030
Papagiannakis, A. T.; S. Dessouky; A. Montoya e H. Roshani (2016) Energy Harvesting from Roadways. Procedia Computer Science, v. 83, p.758-765. DOI: 10.1016/j.procs.2016.04.164
Roshani, H.; P. Jagtap; S. Dessouky; A. Montoya e A. T. Papagiannakis (2018) Theoretical and Experimental Evaluation of Two Roadway Piezoelectric-Based Energy Harvesting Prototypes. Journal of Materials in Civil Engineering, v. 30, n. 2, p.04017264-04017264. DOI: 10.1061/(ASCE)MT.1943-5533.0002112
Santos, V. C. (2014) Aplicação de Sistemas de Geração de Energia nos Pavimentos Rodoviários. Dissertação (mestrado). Universidade de Coimbra, Coimbra. Disponível em: <https://estudogeral.uc.pt/bitstream/10316/38607/1/Aplicacao%20de%20sistemas%20de%20geracao%20de%20energia%20nos%20pavimentos%20rodoviarios.pdf> (Acesso em 16/08/2021)
Xiong, H. (2014) Piezoelectric Energy Harvesting for Public Roadways. Dissertação (mestrado). Virginia Polytechnic Institute and State University, Blacksburg. Disponível em: <https://vtechworks.lib.vt.edu/bitstream/handle/10919/51361/Xiong_H_D_2015.pdf?sequence=1&isAllowed=y> (Acesso em 16/08/2021)
Yoder, E. J. e M. W. Wictzac (1975) Principles of Pavement Design. John Wiley and Sons, New York.
Zhao, H.; J. Yu e J. Ling (2010) Finite element analysis of Cymbal piezoelectric transducers for harvesting energy from asphalt pavement. Journal of the Ceramic Society of Japan. Tokyo, v. 118, n. 1382, p. 909-915. DOI: 10.2109/jcersj2.118.909
Zhao, H.; Y. Tao; Y. Niu e J. Ling (2014) Harvesting energy from asphalt pavement by piezoelectric generator. Journal of Wuhan University of Technology-mater. Sci. Ed., v. 29, n. 5, p. 933-937. DOI: 10.1007/s11595-014-1023-3
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Bruno Cavalcante Mota, Suelly Helena de Araújo Barroso

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who submit papers for publication by TRANSPORTES agree to the following terms:
- The authors retain the copyright and grant Transportes the right of first publication of the manuscript, without any financial charge, and waive any other remuneration for its publication by ANPET.
- Upon publication by Transportes, the manuscript is automatically licensed under the Creative Commons License CC BY 4.0 license. This license permits the work to be shared with proper attribution to the authors and its original publication in this journal.
- Authors are authorized to enter into additional separate contracts for the non-exclusive distribution of the version of the manuscript published in this journal (e.g., publishing in an institutional repository or as a book chapter), with recognition of the initial publication in this journal, provided that such a contract does not imply an endorsement of the content of the manuscript or the new medium by ANPET.
- Authors are permitted and encouraged to publish and distribute their work online (e.g., in institutional repositories or on their personal websites) after the editorial process is complete. As Transportes provides open access to all published issues, authors are encouraged to use links to the DOI of their article in these cases.
- Authors guarantee that they have obtained the necessary authorization from their employers for the transfer of rights under this agreement, if these employers hold any copyright over the manuscript. Additionally, authors assume all responsibility for any copyright infringements by these employers, releasing ANPET and Transportes from any responsibility in this regard.
- Authors assume full responsibility for the content of the manuscript, including the necessary and appropriate authorizations for the disclosure of collected data and obtained results, releasing ANPET and Transportes from any responsibility in this regard.