Fatigue behavior study of a dense graded HMA using the four point bending beam test aided by an in-situ instrumentation at BR-116/RS, Brazil
DOI:
https://doi.org/10.14295/transportes.v28i2.1907Keywords:
IDT fatigue test, Four point bending test, Pavement instrumentation, Fatigue performance.Abstract
Fatigue is characterized by structural deterioration of a material when subjected to a state of repeated stress-strain cycles, thus resulting in cracking of the pavement and eventual failure after a sufficient number of cycles. The laboratory test commonly employed in Brazil to analyze the fatigue life is the indirect tensile test (IDT) under controlled stress. An alternative test method is the four-point bending beam test (4PBBT), which leads the material to a more realistic stress-state. This work examined the fatigue behavior of an asphalt mixture with polymer-modified binder (PG76-11) using both IDT and 4PBBT. A road segment at BR-116/RS was instrumented to monitor mechanic responses in the asphalt layer allowing the evaluation of the material under real traffic, and through real-time monitoring, enabling a better understanding of the distress levels in the structure. The results also demonstrate a closer relation between the 4PBB tests with in-service pavement fatigue development.
Downloads
References
AASHTO (2014) T321 - Determining the Fatigue Life of Compacted Hot-Mix Asphalt (HMA) Subjected to Repeated Flexural Bend-ing. American Association of State Highway and Transportation Officials, Washington, D.C.
Al-Qadi, I. L.; Nassar, W. N. (2003) Fatigue Shift Factors to Predict HMA Performance. The International Journal of Pavement Engineering, vol. 4, p. 69-75.
Bastos, J. B. S. (2016) Considerações sobre a Deformação Permanente de Pavimentos Asfálticos no Dimensionamento Mecanístico-empírico. Tese (Doutorado em Engenharia), Universidade Federal do Ceará, Fortaleza.
Bessa, I. S. (2017) Laboratory and Field Study of Fatigue Cracking Prediction in Asphalt Pavements. Dissertation (Doctor of Sci-ence), Escola Politécnica of the Universidade de São Paulo, São Paulo.
Brito, L. A. T; Ceratti, J. A. P.; Victorino, D. R. (2008) Indicadores do Desempenho de Misturas Asfálticas Determinados através do Ensaio de Compressão Diametral. Revista Transportes (Rio de Janeiro), v. 16, p. 36-44. http://dx.doi.org/10.14295/transportes.v16i1.10.
Brown, S. F. (1977) State-of-the-art Report on Field Instrumentation for Pavement Experiments. Transportation Research Re-cord, nº 640, p. 13-28.
Ceratti, J. A. P.; Brito, L. A. T.; Colpo, G. B.; Doering, D. (2017) Instrumentação In Situ de um Segmento da BR-116 - Estudo Compa-rativo do Efeito Laboratório-campo da Fadiga. Concepa/ANTT, Recursos para Desenvolvimento Tecnológico – RDT.
Chaves, J. M. et al. (2016) Desenvolvimento do Modelo de Deterioração de Pavimentos Asfálticos com Uso de Instrumentação e Sistema Weight in Motion. Autopista Fernão Dias/ANTT, Recursos para Desenvolvimento Tecnológico – RDT, Projeto 06, SGP/AFD_06 REV.0.
Colpo, G. B. (2014) Análise de Fadiga de Misturas Asfálticas Através do Ensaio de Flexão em Viga Quatro Pontos. Dissertação (Mestrado em Engenharia) - Universidade Federal do Rio Grande do Sul, Porto Alegre.
Di Benedetto, H.; De La Roche, C.; Baaj, H.; Pronk, A.; Lundström, R. (2004) Fatigue of Bituminous Mixtures. Materials and Structures, vol. 37, p. 202-216.
Dondi, G.; Pettinari, M.; Sangiorgi, C.; Zoorob, S. E. (2013) Traditional and Dissipated Energy Approaches to Compare the 2PB and 4PB Flexural Methodologies on a Warm Mix Asphalt. Construction and Building Materials, vol. 47, p. 833-839.
Fritzen, M. A. (2016) Desenvolvimento e Validação de Função de Transferência para Previsão do Dano por Fadiga em Pavimentos Asfálticos. Tese (Doutorado em Engenharia). Universidade Federal do Rio de Janeiro – UFRJ/COPPE. Rio de Janeiro.
Garg, N.; Li, Q.; Haggag, M. (2018) Accelerated Pavement Testing of Perpetual Pavement Test Sections under Heavy Aircraft Load-ing at FAA’s National Airport Pavement Test Facility. International Society for Asphalt Pavements - ISAP Conference, Forta-leza, Ceará, Brazil.
Ghuzlan, K. A., Carpenter. (2000) Energy-Derived, Damage-Based Failure Criterion for Fatigue Testing. Transportation Research Record, Journal of the Transportation Research Board, nº 1723, Washington, D.C., p. 141-149. DOI: 10.3141/1723-18.
Gonçalves, F. J. P. (2002) Estudo do Desempenho de Pavimentos Flexíveis a partir de Instrumentação e Ensaios Acelerados. Tese (Doutorado em Engenharia). Universidade Federal do Rio Grande do Sul, Porto Alegre.
Harvey, J. T., Deacon, J. A., Tsai, B-W.; Monismith, C. L. (1995) Fatigue Performance of Asphalt Concrete Mixes and its Relationship to Asphalt Concrete Pavement Performance in California. Report Prepared for California Department of Transportation, Nº RTA-65W48-2, Asphalt Research Program, Institute of Transportation Studies, University of California, Berkeley.
Kim, Y. R.; Lee, H. J.; Little, D. N. (1997) Fatigue Characterization of Asphalt Concrete Using Viscoelasticity and Continuum Dam-age Theory. Journal of the Association of Asphalt Paving Technologists, vol. 66, p. 633–685.
Klinsky, L.; Faria, V.; Oda, S.; Cavalcanti, L.; Barella, R. (2014) Avaliação da influência do tipo de ligante asfáltico na vida de fadiga de misturas asfálticas. In: Encontro do Asfalto, 21, Rio de Janeiro, IBP.
Leandri, P.; Bacci, R.; Di Natale, A.; Rocchio, P.; Losa, M. (2013) Appropriate and Reliable use of Pavement Instrumentation on In-service Roads. Airfield and Highway Pavement 2013: Sustainable and Efficient Pavements, pp. 1424-1433.
Leiva-Villacorta, F.; Timm, D. H. (2012) Simulating the Effects of Instrumentation on Measured Pavement Response. Advances in Pavement Design through Full-scale Accelerated Pavement Testing. Taylor & Francis Group, pp. 153-161.
Mateos, A., Ayuso, J. P., Cadavid, B. (2011) Shift Factors for Asphalt Fatigue from Full-scale Testing. Annual Meeting of the Transportation Research Board, CEDEX Transport Research Center.
Mateos, A.; Ayuso, J. P.; Cadavid, B. (2011) Shift factors for Asphalt Fatigue from Full-scale Testing. Annual Meeting of the Transportation Research Board, CEDEX Transport Research Center.
Mateos, A.; Wu, R.; Harvey, J.; Denneman, E.; Fan, A. (2017) The Logit Model and the Need to Reproduce the Stiffness Degradation Curve of Asphalt Specimens During Fatigue Testing. Transportation Research Record: Journal of the Transportation Re-search Board, nº 2631, p. 105–113.
Matthews, J. M.; Monismith, C. L.; Craus, J. (1993) Investigation of Laboratory Fatigue Testing Procedures for Asphalt Aggregate Mixtures. Journal of Transportation Engineering, vol. 119, p. 634-654, 1993.
Melo, J. V. S. de. (2014) Desenvolvimento e Estudo do Comportamento Reológico e Desempenho Mecânico de Concretos Asfálticos Modificados com Nanocompósitos. Tese (Doutorado em Engenharia). Universidade Federal de Santa Catarina, Santa Catariana.
Nascimento, L. A. H. do. (2015) Implementation and Validation of the Viscoelastic Continuum Damage Theory for Asphalt Mixture and Pavement Analysis in Brazil. Dissertation (Doctor of Philosophy). Faculty of North Carolina State University. Transpor-tation Materials. Raleigh, North Carolina – USA.
Pell, P. S.; Mccarthy, P. F.; Gardner, R. R. (1961) Fatigue of Bitumen and Bituminous Mixes. International Journal of Mechanical Sciences. vol. 3, p. 247-267.
Perret, J. (2003) Déformations des Couches Bitumineuses au Passage D‘une Charge de Trafic. Tese (Doutorado em Engenharia Civil). École Polytechnique Fédérale de Lausanne, Lausanne.
Pinto, S. (1991) Estudo do Comportamento à Fadiga de Misturas Betuminosas e Aplicação na Avaliação Estrutural de Pavimentos. Tese (Doutorado em Engenharia) – Universidade Federal do Rio de Janeiro, Rio de Janeiro.
Preussler, E. S.; Pinto, S.; Medina, J. (1981) Determinação da Vida de Fadiga de Concretos Asfálticos Brasileiros e Aplicação no Dimensionamento de Reforço de Pavimentos. Reunião Anual de Pavimentação, 16. Recife: ABPV.
Priest, A. L. (2005) Calibration of Fatigue Transfer Functions for Mechanistic-empirical Flexible Pavement Design. Thesis (Masters of Science). Faculty of Auburn University, Aubum, Alabama.
Priest, A. L; Timm, D. H. (2006) Methodology and Calibration of Fatigue Transfer Functions for Mechanistic-Empirical Flexible Pavement Design. National Center for Asphalt Technology, NCAT, Auburn University, NCAT Report 06-03.
Rahbar-Rastegar, R.; Daniel, J. S. (2016) Laboratory versus Plant Production: Impact of Material Properties and Performance for RAP and RAS Mixtures. International Journal of Pavement Engineering. pp. 1-12.
Rowe, G. M. (1996) Application of the Dissipated Energy Concept to Fatigue Cracking in Asphalt Pavements. PhD Thesis, University of Nottingham, Nottingham.
Shen, S.; Carpenter, S. H. (2005) Application of Dissipated Energy Concept in Fatigue Endurance Limit Testing. Transportation Research Record, Journal of the Transportation Research Board, nº 1929, Washington, D.C., p. 165-173.
Shen, S.; Carpenter, S. H. (2007) Dissipated Energy Concepts for HMA Performance: Fatigue and Healing. COE report nº. 29. Center of Excellence for Airport Technology, Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Champaign-Urbana Metropolitan Area, Illinois, USA.
Shen, S; Airey, G. D.; Carpenter, S. H.; Huang, H. A. (2006) Dissipated Energy Approach to Fatigue Evaluation. Road Materials and Pavement Design, vol. 7, p. 47-69. Doi: 10.1080/14680629.2006.9690026.
Silva, P. D. E. A.; Motta, L. M. G. (1999) Instrumentação da Pista Circular Experimental do IPR/DNER. Transportes, vol. 7, nº 2, p. 29-46.
Subhy, A.; Presti, D. L.; Airey, G. (2017) New Simplified Approach for Obtaining a Reliable Plateau Value in Fatigue Analysis of Bituminous Materials. Engineering Failure Analysis. Doi: 10.1016/j.engfailanal.2017.05.021.
Tabatabafe, N.; Sebaaly, P. (1990) State-of-the-art: Pavement Instrumentation. Transportation Research Record, nº 1260, p. 246-255.
Tangella, S. C. S. R., Craus, J., Deacon, J. A.; Monismith, C. L. (1990) Summary Report on Fatigue Response of Asphalt Mixtures. Prepared for Strategic Highway Research Program, Project A-003-A. Institute of Transportation Studies, University of Cal-ifornia, Berkeley.
Tapsoba, N.; Sauzéat, C.; Di Benedetto, H. (2013) Analysis of Fatigue Test for Bituminous Mixtures. Journal of Materials in Civil Engineering, vol. 25, p. 701-710. DOI: 10.1061/(ASCE)MT.1943-5533.0000636.
Tayebali, A. A.; Deacon, J. A.; Coplantz, J. S.; Finn, F. N.; Monismith, C. L. (1994) Fatigue Response of Asphalt Aggregate Mixtures, Part I e II. Strategy Highway Research Program, Project A-404. Asphalt Research Program, Institute of Transportation Studies, University of California.
Timm, D. H.; Priest, A. L.; Mcewen, T. V. (2004) Design and Instrumentation of the Structural Pavement Experiment at the NCAT Test Track. National Center for Asphalt Technology, NCAT, Auburn University, NCAT Report 04-01.
Ullidtz, P.; Harvey, J.; Tsai, B.-W.; Monismith, C. L. (2006) Calibration of CalME Models using WesTrack Performance Data. Califor-nia Department of Transportation Division of Research and Innovation Office of Roadway Research, Report nº UCPRC-RR-2006-14.
Van Deusen, D. A.; Newcomb, D. E.; Labuz, J. F. (1992) A Review of Instrumentation Technology for the Minnesota Road Research Project. University of Minnesota.
Xiao, F. (2006) Development of Fatigue Predictive Models of Rubberized Asphalt Concrete (RAC) Containing Reclaimed Asphalt Pavement (RAP). Dissertation (Doctor of Philosophy). Clemson University, Clemson.
Zejiao, D.; Yiqiu, T.; Meili, L. (2012) Design and Implementation of a Full-scale Accelerated Pavement Testing Facility for Extreme Regional Climates in China. Advances in Pavement Design through Full-scale Accelerated Pavement Testing. Taylor & Fran-cis Group, pp. 39-45.
Downloads
Published
How to Cite
Issue
Section
License
Authors who submit papers for publication by TRANSPORTES agree to the following terms:
- Authors retain copyright and grant TRANSPORTES the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors may enter into separate, additional contractual arrangements for the non-exclusive distribution of this journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in TRANSPORTES.
- Authors are allowed and encouraged to post their work online (e.g., in institutional repositories or on their website) after publication of the article. Authors are encouraged to use links to TRANSPORTES (e.g., DOIs or direct links) when posting the article online, as TRANSPORTES is freely available to all readers.
- Authors have secured all necessary clearances and written permissions to published the work and grant copyright under the terms of this agreement. Furthermore, the authors assume full responsibility for any copyright infringements related to the article, exonerating ANPET and TRANSPORTES of any responsibility regarding copyright infringement.
- Authors assume full responsibility for the contents of the article submitted for review, including all necessary clearances for divulgation of data and results, exonerating ANPET and TRANSPORTES of any responsibility regarding to this aspect.