.

Authors

  • Francisco Moraes Oliveira Neto Universidade Federal do Ceará, Campus de Russas
  • Anselmo Ramalho Pitombeira Neto Universidade Federal do Ceará, Departamento de Engenharia de Produção
  • Carlos Felipe Grangeiro Loureiro Universidade Federal do Ceará, Departamento de Engenharia de Transportes
  • Bruno Vieira Bertoncini Universidade Federal do Ceará, Departamento de Engenharia de Transportes

DOI:

https://doi.org/10.14295/transportes.v24i1.1017

Keywords:

Transport Demand Modeling, Synthetic Origin-Destination Matrices, Reconstruction of Origin-Destination Matrices, Estimation of Origin-Destination Matrices.

Abstract

Origin-destination (OD) matrices quantify the demand for transport in a geographic region, and play a key role in planning studies, design and management of urban and regional transport systems. Traditionally, the estimation of OD matrices consists of making direct sample surveys, such as: household interviews, vehicle plate counting and interviews in public transport terminals. A lower cost alternative is to synthesize an OD matrix by means of mathematical methods using traffic volumes observed in a transport network, which can be classified into methods of reconstruction and estimation. This paper presents a conceptual discussion focused on the assumptions and limitations of the main reconstruction methods based on maximizing entropy, generalized least squares and Bayesian inference. We describe in detail the mathematical foundation of the methods and make recommendations to their improvement and effective application.

Downloads

Download data is not yet available.

Author Biography

Francisco Moraes Oliveira Neto, Universidade Federal do Ceará, Campus de Russas

Possui Graduação em Engenharia Civil pela Universidade Federal do Ceará (2002), Mestrado em Engenharia de Transportes pela Universidade Federal do Ceará (2004), e Doutorado pela University of Tennessee-Knoxville (2010). Realizou estágio pós-doutoral no Centro de Pesquisa em Análise de Sistemas de Transportes (CTA Center for Transportation Analysis) do Laboratório Nacional de Oak Ridge (ORNL Oak Ridge National Laboratory), USA. Atualmente é Professor Adjunto da Universidade Federal do Ceará (UFC) Campus de Russas. Participa em pesquisa colaborativa com o Grupo de Pesquisa em Transportes, Trânsito e Meio Ambiente do Departamento de Engenharia de Transportes da UFC - GTTEMA/DET/UFC. Possui experiência profissional e acadêmica em Gerenciamento e Simulação de Sistemas Urbanos de Tráfego, e em Pesquisa Operacional. Tem interesse nas seguintes áreas: Análise de Sistemas de Transportes, com ênfase na Modelagem de Redes de Transportes de Carga e de Passageiros, Modelagem Comportamental e Análise Espacial em Transportes.

References

Bell, M. G. H. (1983) The Estimation of an Origin-Destination Matrix from Traffic Counts. Transportation Science, v. 17, p. 198–217. DOI: 10.1287/trsc.17.2.198.

Bell, M. G. H. (1991) The Estimation of Origin-Destination Matrices by Constrained Generalized Least Squares. Transportation Research, v. 25B, p. 13-22. DOI: 10.1016/0191-2615(91)90010-G.

Bertoncini, B. V. e E. Kawamoto (2012) Modelagem da matriz OD sintética a partir dos volumes observados nas interseções da rede de transportes. Transportes, v. 20, n. 2, p. 75–83. DOI: 10.4237/transportes.v20i2.562.

Bertoncini, B. V.; C. F. G. Loureiro e E. Kawamoto (2013) Proposta e Avaliação de Algoritmo de Médias Sucessivas para Reconstrução de Matriz Origem-destino Sintética. Transportes, v. 21, n. 2, p. 21–29. DOI: 10.4237/transportes.v21i2.697.

Cascetta, E. (1984) Estimation of Trip Matrices from Traffic Counts and Survey Data: a Generalized Least Squares Estimator. Transportation Research, v. 16B, n. 4-5, p.89-99. DOI: 10.1016/0191-2615(84)90012-2.

Cascetta, E. (2009) Transportation Systems Analysis: Models and Applications (2a ed.). Springer, New York, USA. DOI: 10.1007/978-0-387-75857-2.

Cascetta, E. e S. Nguyen (1988) A Unified Framework for Estimating or Updating Origin/Destination Matrices from Traffic Counts. Transportation Research, v. 22B, p. 437–455. DOI: 10.1016/0191-2615(88)90024-0.

Daganzo, C. F. e Y. Sheffi (1977) On Stochastic Models of Traffic Assignment. Transportation Science, v. 11, n. 3, p. 253-274. DOI: 10.1287/trsc.11.3.253.

Fisk, C. (1988) On Combining Maximum Entropy Trip Matrix Estimation with User Optimal Assignment. Transportation Research B, v. 22, p. 69-79. DOI: 10.1016/0191-2615(88)90035-5.

Fisk, C. (1989) Trip Matrix Estimation from Link Counts: the Congested Network Case. Transportation Research B, v. 23, p. 331-336. DOI: 10.1016/0191-2615(89)90009-X.

Gelman, A.; J. B. Carlin; H. S. Stern e D. B. Rubin (2003) Bayesian Data Analysis (2a ed.). Chapman-Hall/CRC, Boca Raton, USA.

Hazelton, M. L. (2000) Estimation of Origin-Destination Matrices from Link Flows on Uncongested Networks. Transportation Research B, v. 34, p. 549-566. DOI: 10.1016/S0191-2615(99)00037-5.

Hazelton, M. L. (2001) Inference for Origin-Destination Matrices: Estimation, Prediction and Reconstruction. Transportation Research B, v. 35, p.667-676. DOI: 10.1016/S0191-2615(00)00009-6.

Lamond, B. e N. F. Stewart (1981) Bregman’s Balancing Method. Transportation Research B, v. 15 p. 239–248. DOI: 10.1016/0191-2615(81)90010-2.

Lo, H. P.; N. Zhang e W. H. K. Lam (1996) Estimation of an Origin-Destination Matrix with Random Link Choice Proportions: a Statistical Approach. Transportation Research B, v. 30, n. 4, p. 309-324. DOI: 10.1016/0191-2615(95)00036-4.

Maher, M. J. (1983) Inferences on Trip Matrices from Observations on Link Volumes: a Bayesian Statistical Approach. Transportation Research B, v. 17, p. 435–447. DOI: 10.1016/0191-2615(83)90030-9.

Marzano, V.; A. Papola e F. Simonelli (2009) Limits and Perspectives of Effective O-D Matrix Correction Using Traffic Counts. Transportation Research C, v. 17, p. 120-132. DOI: 10.1016/j.trc.2008.09.001.

McNeil, S. e C. Hendrickson (1985) A Regression Formulation of the Matrix Estimation Problem. Transportation Science, v. 19, p. 278–292. DOI: 10.1287/trsc.19.3.278.

Murchland, J. D. (1977) The Multiproportional Problem. TSG Note JDM-263, Transport Studies Group, University College London.

Ortúzar, J. de D. e L. G. Willumsen (2011) Modelling Transport (4a ed.). Wiley, Chichester. DOI: 10.1002/9781119993308.

Pitombeira-Neto, A. R. (2015) Dynamic Bayesian Statistical Models for the Estimation of the Origin-Destination Matrix. Tese de doutorado apresentada ao Programa de Pós-Graduação em Engenharia de Transportes do Departamento de Engenharia de Transportes da Universidade Federal do Ceará.

Prato, C. G. (2009) Route Choice Modeling: Past, Present and Future Research Directions. Journal of Choice Modelling, v. 2, n. 1, p. 65-100. DOI: 10.1016/S1755-5345(13)70005-8.

Robillard, P. (1975) Estimating the OD Matrix from Observed Link Volumes. Transportation Research B, v. 9, p. 123-128. DOI: 10.1016/0041-1647(75)90049-0.

Sheffi, Y. (1985) Urban Transportation Networks: Equilibrium Analysis with Mathematical Programming methods, Prentice-Hall, Englewood Cliffs, USA.

Smith, M. J. (1979) The Existence, Uniqueness and Stability of Traffic Equilibria. Transportation Research B, v. 13, p. 295-304. DOI: 10.1016/0191-2615(79)90022-5.

Spiess, H. (1987) A Maximum Likelihood Model for Estimating Origin-Destination Matrices. Transportation Research B, v. 21, p. 395–412. DOI: 10.1016/0191-2615(87)90037-3.

Tebaldi, C. e M. West (1998) Bayesian Inference on Network Traffic Using Link Count Data. Journal of the American Statistical Association, v. 93, n. 442, p. 557-573. DOI: 10.1080/01621459.1998.10473707.

Van Zuylen, H. (1978) The Information Minimizing Method: Validity And Application to Transport Planning. In: Jasen, G. R. H. et al. (eds.) New Developments in Modelling Travel Demand and Urban Systems, Saxon, Farnborough.

Van Zuylen, H. e D. M. Branston (1982) Consistent Link Flow Estimation from Counts. Transportation Research B, v. 16, p. 473-476. DOI: 10.1016/0191-2615(82)90006-6.

Van Zuylen, H. e L. G. Willumsen (1980) The Most Likely Trip Matrix Estimated from Traffic Counts. Transportation Research B, v. 14, p. 281-293. DOI: 10.1016/0191-2615(80)90008-9.

Vardi, Y. (1996) Network Tomography: Estimating Source-Destination Traffic Intensities from Link Data. Journal of the American Statistical Association, v. 91, p. 365-377. DOI: 10.2307/2291416.

Wardrop, J. G. (1952) Some Theoretical Aspects of Traffic Research. Proceedings of the Institution of Civil Engineers part II, Institution of Civil Engineers, p. 325-378. DOI: 10.1680/ipeds.1952.11259.

Watling, D. (2002a) A second order stochastic network equilibrium model, i: Theoretical foundation. Transportation Science, v. 36, n. 2, p. 149-166. DOI: 10.1287/trsc.36.2.149.560.

Watling, D. (2002b) A second order stochastic network equilibrium model, ii: Solution method and numerical experiments. Transportation Science, v. 36, n. 2, p. 167-183. DOI: 10.1287/trsc.36.2.167.564.

Willumsen, L. G. (1978) Estimation of an O-D Matrix from Traffic Counts: a Review. Institute for Transport Studies, Working Paper, n. 99, Leeds University.

Willumsen, L. G. (1981) Simplified Transport Demand Models Based On Traffic Counts. Transportation, v. 10, p. 257–278. DOI: 10.1007/BF00148462.

Willumsen, L. G. (1984) Estimating Time-Dependent Trip Matrices from Traffic Counts. Proceedings of the 9th International Symposium on Transportation and Traffic Theory, Delft University, Delft, Netherlands, p. 397-411.

Wilson, A. G. (1970) Entropy in Urban and Regional Modeling. Pion, London, England.

Yang, H. (1995) Heuristic Algorithms for the Bilevel Origin-Destination Matrix Estimation Problem. Transportation Research B, v. 29, n.4, p. 231-242. DOI: 10.1016/0191-2615(95)00003-V.

Yang, H.; T. Sasaki; Y. Iida e Y. Asakura (1992) Estimation of Origin-Destination Matrices from Link Counts on Congested Networks. Transportation Research B, v. 26, p. 417-434. DOI: 10.1016/0191-2615(92)90008-K.

Published

2016-05-11

How to Cite

Oliveira Neto, F. M., Pitombeira Neto, A. R., Loureiro, C. F. G., & Bertoncini, B. V. (2016). TRANSPORTES, 24(1), 107–119. https://doi.org/10.14295/transportes.v24i1.1017

Issue

Section

Artigos