Deformação permanente em ligantes e misturas asfálticas preparados com Elvaloy® e PPA: aspectos laboratoriais e modelagem reológica

Autores

DOI:

https://doi.org/10.14295/transportes.v29i3.2652

Palavras-chave:

Deformação permanente, Terpolímero Elvaloy, Ácido polifosfórico, Modelagem reológica

Resumo

Tem-se verificado uma falta de compreensão adequada sobre o desempenho real de ligantes asfálticos modificados apenas com ácido polifosfórico (CAP+PPA) à deformação permanente. Neste sentido, o presente trabalho buscou analisar a resistência do CAP+PPA à deformação permanente e em temperaturas altas típicas dos pavimentos brasileiros. Devido a resultados promissores, outra formulação com Elvaloy® e PPA (CAP+Elvaloy+PPA) também foi investigada. Ensaios padronizados de fluência e recuperação sob tensão múltipla foram realizados a 64 e 70°C, e o flow number (FN) foi determinado em misturas densas e a 60°C. O CAP+PPA (PG 76-22) e o CAP+Elvaloy+PPA (PG 76-22) foram baseados em um CAP puro PG 64-22. O CAP+Elvaloy+PPA pôde lidar com tráfegos mais pesados em qualquer escala, pois suas compliâncias não-recuperáveis não excederam 1.0 kPa-1 e FN superou 7.000 ciclos. Todavia, o CAP+PPA não mostrou igual padrão de comportamento porque FN foi apenas 17% maior que o resultado do CAP de base.

Downloads

Não há dados estatísticos.

Referências

AASHTO (2013) Standard method of test for multiple stress creep recovery (MSCR) test of asphalt binder using a dynamic shear rheometer (DSR), AASHTO TP 70, American Association of State Highway and Transportation Officials, Washington, DC.

AASHTO (2019a) Standard method of test for multiple stress creep recovery (MSCR) test of asphalt binder using a dynamic shear rheometer (DSR), AASHTO T 350, American Association of State Highway and Transportation Officials, Washington, DC.

AASHTO (2019b) Standard specification for performance-graded asphalt binder using multiple stress creep recovery (MSCR) test, AASHTO M 332, American Association of State Highway and Transportation Officials, Washington, DC.

Anderson, M. (2014) Introduction to the multiple-stress creep-recovery (MSCR) test and its use in the PG binder specification. Disponível em: <https://web.archive.org/web/20190430182245/https://www.webpages.uidaho.edu/bayomy/iac/54th/presentations_54th/2.%20iac2014_mscr_mike%20anderson.pdf> (acesso em 22/06/2021).

Apeagyei, A. K. (2014) Flow number predictive models from volumetric and binder properties. Construction and Building Materials, v. 64, p. 240-245. DOI: 10.1016/j.conbuildmat.2014.04.069.

Arshadi, A. (2013) Importance of asphalt binder properties on rut resistance of asphalt mixture. M.Sc. Thesis. Department of Civil and Environmental Engineering, University of Wisconsin-Madison. Madison, WI. Disponível em: <https://minds.wisconsin.edu/handle/1793/66328> (acesso em 21/06/2021).

ASTM (2006) Standard test method for viscosity determination of asphalt at elevated temperatures using a rotational viscometer, ASTM D4402, American Society for Testing and Materials, West Conshohocken, PA. DOI: 10.1520/D4402-06.

ASTM (2008) Standard test method for determining the rheological properties of asphalt binder using a dynamic shear rheometer, ASTM D7175, American Society for Testing and Materials, West Conshohocken, PA. DOI: 10.1520/D7175-08.

ASTM (2009) Standard viscosity-temperature chart for asphalts, ASTM D2493, American Society for Testing and Materials, West Conshohocken, PA. DOI: 10.1520/D2493_D2493M-09.

ASTM (2012) Standard test method for effect of heat and air on a moving film of asphalt (rolling thin-film oven test), ASTM D2872, American Society for Testing and Materials, West Conshohocken, PA. DOI: 10.1520/D2872-12.

ASTM (2015) Standard test method for multiple stress creep and recovery (MSCR) of asphalt binder using a dynamic shear rheometer, ASTM D7405, American Society for Testing and Materials, West Conshohocken, PA. DOI: 10.1520/D7405-15.

Bahia, H. U.; D. I. Hanson; M. Zeng; H. Zhai; M. A. Khatri and R. M. Anderson (2001) Characterization of modified asphalt binders in Superpave mix design. NCHRP Report 459. Washington (DC): Transportation Research Board.

Bastos, J. B. S.; J. B. Soares and L. A. H. Nascimento (2017) Critérios para os resultados do ensaio uniaxial de carga repetida de misturas asfálticas em laboratório a partir do desempenho em campo. Transportes, v. 25, n. 2, p. 29-40. DOI: 10.14295/transportes.v25i2.1284.

Bastos, J. B. S.; L. F. A. L. Babadopulos and J. B. Soares (2017) Relationship between multiple stress creep recovery (MSCR) binder test results and asphalt concrete rutting resistance in Brazilian roadways. Construction and Building Materials, v. 145, p. 20-27. DOI: 10.1016/j.conbuildmat.2017.03.216.

Bastos, J. B. S.; R. L. Borges; J. B. Soares and L. M. G. Klinsky (2015) Avaliação em laboratório e em campo da deformação permanente de pavimentos asfálticos do Ceará e de São Paulo. Transportes, v. 23, n. 3, p. 44-55. DOI: 10.14295/transportes.v23i3.914.

Bessa, I. S.; M. M. Takahashi; K. L. Vasconcelos and L. L. B. Bernucci (2019) Characterization of neat and modified asphalt binders and mixtures in relation to permanent deformation. Science and Engineering of Composite Materials, v. 26, n. 1, p. 379-387. DOI: 10.1515/secm-2019-0022.

Bulatović, V. O.; V. Rek and J. Marcović (2014) Rheological properties of bitumen modified with ethylene butylacrylate glycidylmethacrylate. Polymer Engineering and Science, v. 54, n. 5, p. 1056-1065. DOI: 10.1002/pen.23649.

Cunha, M. B.; J. R. E. Zegarra and J. L. Fernandes Jr. (2007) Revisão da seleção do grau de desempenho (PG) de ligantes asfálticos por estados do Brasil. In Anais do XXI Congresso de Pesquisa e Ensino em Transportes (Rio de Janeiro-RJ). Rio de Janeiro: ANPET.

D’Angelo, J. and R. Dongré (2009) Practical use of multiple stress creep and recovery test: characterization of styrene–butadiene–styrene dispersion and other additives in polymer-modified asphalt binders. Transportation Resarch Record, n. 2126, p. 73-82. DOI: 10.3141/2126-09.

DER-SP (2005) Concreto asfáltico, DER ET-DE-P00/027, Departamento de Estradas de Rodagem do Estado de São Paulo, São Paulo.

DNER (1998) Agregados – determinação da abrasão “Los Angeles”, DNER-ME 035, Departamento Nacional de Estradas de Rodagem, Rio de Janeiro.

DNIT (2006) Cimentos asfálticos de petróleo – especificação de material, DNIT 095/2006 – EM, Departamento Nacional de Infraestrutura de Transportes, Rio de Janeiro.

Domingos, M. D. I. and A. L. Faxina (2021) Literature review of the multiple stress creep and recovery, performance-related test. Journal of Transportation Engineering, Part B: Pavements, v. 147, n. 1, 03121001. DOI: 10.1061/JPEODX.0000248.

Domingos, M. D. I.; A. L. Faxina and L. L. B. Bernucci (2017) Characterization of the rutting potential of modified asphalt binders and its correlation with the mixture’s rut resistance. Construction and Building Materials, v. 144, p. 207-213. DOI: 10.1016/j.conbuildmat.2017.03.171.

Fee, D.; R. Maldonado; G. Reinke and H. Romagosa (2010) Polyphosphoric acid modification of asphalt. Transportation Research Record, n. 2179, p. 49-57. DOI: 10.3141/2179-06.

Fontes, L. P. T. L.; G. Trichês; J. C. Pais and P. A. A. Pereira (2010) Evaluating permanent deformation in asphalt rubber mixtures. Construction and Building Materials, v. 24, n. 7, p. 1193-1200. DOI: 10.1016/j.conbuildmat.2009.12.021.

Golalipour, A. (2011) Modification of multiple stress creep and recovery test procedure and usage in specification. M.Sc. Thesis. Department of Civil and Environmental Engineering, University of Wisconsin-Madison. Madison, WI. Disponível em: <https://minds.wisconsin.edu/handle/1793/56398> (acesso em 21/06/2021).

Golalipour, A. (2020) Asphalt material creep behavior. In Tański, T. A., M. Sroka, A. Zieliński e G. Golański (eds.) Creep characteristics of engineering materials. London: IntechOpen, 2020, Capítulo 4. DOI: 10.5772/intechopen.85783.

Golalipour, A.; H. U. Bahia and H. A. Tabatabaee (2017) Critical considerations toward better implementation of the multiple stress creep and recovery test. Journal of Materials in Civil Engineering, v. 29, n. 5, 04016295. DOI: 10.1061/(ASCE)MT.1943-5533.0001803.

Khader, G. A.; A. Ramesh and M. Kumar (2015) A laboratory study on acid modified bituminous mixes in comparison for rutting characteristics. Civil Engineering and Urban Planning: an International Journal, v. 2, n. 4, p. 19-33. Disponível em: <https://airccse.com/civej/papers/2415civej03.pdf> (acesso em 22/06/2021).

Klinsky, L. M. G.; V. S. S. Bardini and V. C. Faria (2020) Evaluation of permanent deformation of asphalt rubber using multiple stress creep recovery tests and flow number tests. Transportes, v. 28, n. 2, p. 76-86. DOI: 10.14295/transportes.v28i2.2110.

Kodrat, I.; D. Sohn and S. A. M. Hesp (2007) Comparison of polyphosphoric acid-modified asphalt binders with straight and polymer-modified materials. Transportation Research Record, n. 1998, p. 47-55. DOI: 10.3141/1998-06.

Li, X.; T. Clyne; G. Reinke; E. N. Johnson; N. Gibson and M. E. Kutay (2011) Laboratory evaluation of asphalt binders and mixtures containing polyphosphoric acid. Transportation Research Record, n. 2210, p. 47-56. DOI: 10.3141/2210-06.

Liu, H.; W. Zeiada; G. G. Al-Khateeb; A. Shanableh and M. Samarai (2021) Use of the multiple stress creep recovery (MSCR) test to characterize the rutting potential of asphalt binders: a literature review. Construction and Building Materials, v. 269, 121320. DOI: 10.1016/j.conbuildmat.2020.121320.

Liu, Y. and Z. You (2009) Determining Burger’s model parameters of asphalt materials using creep-recovery testing data. In You, Z., A. R. Abbas e L. Wang (eds.) Pavements and materials: modeling, testing, and performance. Reston: American Society of Civil Engineers, p. 26-36. DOI: 10.1061/41008(334)3.

Lv, Q.; W. Huang; H. Sadek; F. Xiao and C. Yan (2019) Investigation of the rutting performance of various modified asphalt mixtures using the hamburg wheel-tracking device test and multiple stress creep recovery test. Construction and Building Materials, v. 206, p. 62-70. DOI: 10.1016/j.conbuildmat.2019.02.015.

Matos, T. S. (2017) Investigação de propriedades dinâmico-mecânicas de ligantes asfálticos brasileiros como indicadores de seus desempenhos operacionais em campo. Dissertação de Mestrado. Programa de Pós-Graduação em Engenharia e Ciência dos Materiais, Universidade Federal do Paraná. Curitiba. Disponível em: <https://hdl.handle.net/1884/46967> (acesso em 21/06/2021).

Merusi, F. (2012) Delayed mechanical response in modified asphalt binders. Characteristics, modeling and engineering implications. Road Materials and Pavement Design, v. 13, n. S1, p. 321-345. DOI: 10.1080/14680629.2012.657096.

Mohammad, L. N.; Z. Wu; S. Obulareddy; S. Cooper and C. Abadie (2006) Permanent deformation analysis of hot-mix asphalt mixtures with simple performance tests and 2002 mechanistic-empirical pavement design software. Transportation Research Record, n. 1970, p. 133-142. DOI: 10.1177/0361198106197000114.

Mu, Y.; Z. Fu; J. Liu; C. Li; W. Dong and J. Dai (2020) Evaluation of high-temperature performance of asphalt mixtures based on climatic conditions. Coatings, v. 10, n. 6, 535. DOI: 10.3390/coatings10060535.

Pamplona, T. F.; F. P. Sobreiro; A. L. Faxina and G. T. P. Fabbri (2012) Propriedades reológicas sob altas temperaturas de ligantes asfálticos de diferentes fontes modificados com ácido polifosfórico. Transportes, v. 20, n. 4, p. 5-11. DOI: 10.4237/transportes.v20i4.612.

Reinke, G.; S. Glidden; D. Herlitzka and S. Veglahn (2012) Polyphosphoric acid-modified binders and mixtures: aggregate and binder interactions, rutting, and moisture sensitivity of mixtures. Transportation Research Circular, n. E-C160, p. 86-105. Disponível em: <http://onlinepubs.trb.org/onlinepubs/circulars/ec160.pdf> (acesso em 22/06/2021).

Roberts, F. L.; P. S. Kandhal; E. R. Brown; D.-Y. Lee and T. W. Kennedy (1996) Hot mix asphalt materials, mixture design and construction. 2nd ed. Lanham: NAPA Education Foundation.

Saboo, N. and P. Kumar (2016) Analysis of different test methods for quantifying rutting susceptibility of asphalt binders. Journal of Materials in Civil Engineering, v. 28, n. 7, 04016024. DOI: 10.1061/(ASCE)MT.1943-5533.0001553.

Sefidmazgi, N. H.; L. Tashman and H. Bahia (2012) Internal structure characterization of asphalt mixtures for rutting performance using imaging analysis. Road Materials and Pavement Design, v. 13, n. S1, p. 21-37. DOI: 10.1080/14680629.2012.657045.

Stempihar, J.; A. Gundla and B. S. Underwood (2018) Interpreting stress sensitivity in the multiple stress creep and recovery test. Journal of Materials in Civil Engineering, v. 30, n. 2, 04017283. DOI: 10.1061/(ASCE)MT.1943-5533.0002153.

Tabatabaee, N. and P. Teymourpour (2010) Effect of modification on rut susceptibility of asphalt binders and mixtures. In Proceedings of the 11th International Conference on Asphalt Pavements (Nagoya-Japan). Lino Lakes: ISAP, v. 2, p. 1094-1103.

Wasage, T. L. J.; J. Stastna and L. Zanzotto (2011) Rheological analysis of multi-stress creep recovery (MSCR) test. International Journal of Pavement Engineering, v. 12, n. 6, p. 561-568. DOI: 10.1080/10298436.2011.573557.

Witczak, M. W.; K. Kaloush; T. Pellinen; M. El-Basyouny and H. Von Quintus (2002) Simple performance test for Superpave mix design. NCHRP Report 465. Washington (DC): Transportation Research Board.

Yildirim, Y. (2007) Polymer modified asphalt binders. Construction and Building Materials, v. 21, n. 1, p. 66-72. DOI: 10.1016/j.conbuildmat.2005.07.007.

Downloads

Publicado

30-04-2022

Como Citar

Inocente Domingos, M. D. ., Faxina, A. L., & Bariani Bernucci, L. L. . (2022). Deformação permanente em ligantes e misturas asfálticas preparados com Elvaloy® e PPA: aspectos laboratoriais e modelagem reológica. TRANSPORTES, 30(1), 2652. https://doi.org/10.14295/transportes.v29i3.2652

Edição

Seção

Artigos Vencedores do Prêmio ANPET Produção Científica