Análise da gravidade de lesões de pedestres no Brasil utilizando modelos logit de parâmetros aleatórios

Autores

  • Mateus Nogueira Silva Universidade Federal do Ceará, Ceará – Brasil
  • Flávio José Craveiro Cunto Universidade Federal do Ceará, Ceará – Brasil
  • Marcos José Timbó Lima Gomes Universidade Federal do Cariri, Ceará – Brasil
  • Sara Ferreira Universidade do Porto, Porto – Portugal

DOI:

https://doi.org/10.14295/transportes.v31i1.2761

Palavras-chave:

Pedestre, Gravidade, Modelos Logit, Parâmetros aleatórios

Resumo

No Brasil, os pedestres representam o terceiro maior grupo de vítimas de acidentes, depois de motociclistas e ocupantes de automóveis. O emprego de medidas para garantir a segurança de pedestres requer uma compreensão dos fatores de risco associados a lesões em acidentes. Um modelo logit de parâmetros aleatórios foi estimado para investigar fatores que influenciam na severidade dos acidentes com pedestres em vias urbanas de Fortaleza – Brasil. Para isso uma amostra 2660 observações de atropelamentos foi utilizada. Dos fatores investigados apenas a variável referente a idade superior a 60 anos do pedestre obteve um parâmetro aleatório significativo. Nesse caso, a heterogeneidade nas observações pode estar associada, entre outros fatores, a fragilidade física do corpo e a função cognitiva que pode diferir entre os indivíduos desse grupo. Os resultados mostraram ainda que os acidentes ocorridos a noite, com veículos pesados, nos finais de semana e localizadas em vias de maior classificação de tráfego estão associadas a lesões mais graves. A incorporação da heterogeneidade não observada na estimação dos parâmetros do modelo destaca-se como uma das principais contribuições deste trabalho.

Downloads

Não há dados estatísticos.

Referências

AMC (2018) Relatório Anual de Segurança Viária de Fortaleza 2018. Autarquia Municipal de Trânsito e Cidadania, Fortaleza, 2018.

Aziz, H; M. A.; S. V. Ukkusuri and S. Hasan (2013) Exploring the determinants of pedestrian-vehicle crash severity in New York City. Accident Analysis and Prevention, v. 50, p. 1298–1309, 2013. doi:10.1016/j.aap.2012.09.034

Batouli, G.; M. Guo; B. Janson and W. Marshall (2020) Analysis of pedestrian-vehicle crash injury severity factors in Colorado 2006–2016. Accident Analysis and Prevention, v. 148. doi: 10.1016/j.aap.2020.105782

Chen, Z. and Fan, W. (2019) Modeling Pedestrian Injury Severity in Pedestrian-Vehicle Crashes in Rural and Urban Areas: Mixed Logit Model Approach. Transportation Research Record, v. 2673, p. 1023–1034. doi: 10.1177/0361198119842825

Corben, B.; M. Cameron; T. Senserik and G. Rechnitzer (2004). Development of the visionary research model: application to the car/pedestrian conflict. (Rep n. 229). Melbourne: Monash University Accident Research Centre.

Cunto, F. J. and S. Ferreira (2017) An analysis of the injury severity of motorcycle crashes in Brazil using mixed ordered response models. Journal of Transportation Safety & Security, 9(sup1), 33-46. doi: 10.1080/19439962.2016.1162891

Dutta, B. and V. Vasudevan,(2017) Study on pedestrian risk exposure at unsignalized intersection in a country with extreme vehicle heterogeneity and poor lane discipline. Transportation Research Record, v. 2634, p. 69–77. doi: 10.3141/2634-11

Eluru, N.; C. R. Bhat and D. A. Hensher (2008) A mixed generalized ordered response model for examining pedestrian and bicyclist injury severity level in traffic crashes. Accident Analysis and Prevention, v. 40, n. 3, p. 1033–1054. doi: 10.1016/j.aap.2007.11.010

Ferreira, S.; M. Amorim and A. Couto (2017) Risk factors affecting injury severity determined by the MAIS score. Traffic Injury Prevention, v. 18, p. 1–29. doi: 10.1080/15389588.2016.1246724

Gkritza, K. and F. L. Mannering (2008) Mixed logit analysis of safety-belt use in single- and multi-occupant vehicles. Accident Analysis and Prevention, v. 40, p. 443–451. doi: 10.1016/j.aap.2007.07.013

Haleem, K.; P. Alluri and A. Gan (2015) Analyzing pedestrian crash injury severity at signalized and non-signalized locations. Accident Analysis and Prevention, v. 81, p. 14–23. doi: 10.1016/j.aap.2015.04.025

Islam, S. and S. L. Jones (2014) Pedestrian at-fault crashes on rural and urban roadways in Alabama. Accident Analysis and Prevention, v. 72, p. 267–276. doi: 10.1016/j.aap.2014.07.003

Jang, K.; S. Park; S. Kang; K. K. Song and S. Chung (2013) Evaluation of pedestrian safety. Transportation Research Record, n. 2393, p. 104–116. doi: 10.3141/2393-12

Kim, J. K.; G. F. Ulfarsson; V. N. Shankar and S. Kim (2008) Age and pedestrian injury severity in motor-vehicle crashes: A heteroskedastic logit analysis. Accident Analysis and Prevention, v. 40, n. 5, p. 1695–1702. doi: 10.1016/j.aap.2008.06.005

Kim, J. K.; G. F. Ulfarsson; V. N. Shankar and F. L. Mannering (2010) A note on modeling pedestrian-injury severity in motor-vehicle crashes with the mixed logit model. Accident Analysis and Prevention, v. 42, n. 6, p. 1751–1758. doi: 10.1016/j.aap.2010.04.016

Lee, C. and M. Abdel-Aty (2005) Comprehensive analysis of vehicle-pedestrian crashes at intersections in Florida. Accident Analysis and Prevention, v. 37, n. 4, p. 775–786. doi: 10.1016/j.aap.2005.03.019

Li, D; P. Ranjitkar; Y. Zhao; H. Yi and S. Rashidi (2016) Analyzing pedestrian crash injury severity under different weather conditions. Traffic Injury Prevention,v.18, n.4, p. 427–430. doi: 10.1080/15389588.2016.1207762

Ma, Z.; C. Shao; H. Yue and S. Ma (2009) Analysis of the logistic model for accident severity on urban road environment. Intelligent Vehicles Symposium, Proceedings, p. 983–987. doi: 10.1109/IVS.2009.5164414

Mannering, F. L.; V. Shankar and C. R. Bhat (2016) Unobserved heterogeneity and the statistical analysis of highway accident data. Analytic Methods in Accident Research, v. 11, p. 1–16. doi: 10.1016/j.amar.2016.04.001

Miranda-Moreno, L. F.; P. Morency and A. M. El-Geneidy (2011) The link between built environment, pedestrian activity and pedestrian-vehicle collision occurrence at signalized intersections. Accident Analysis and Prevention, v. 43, n. 5, p. 1624–1634. doi: 10.1016/j.aap.2011.02.005

Pour-Rouholamin, M. and H. Zhou (2016) Investigating the risk factors associated with pedestrian injury severity in Illinois. Journal of Safety Research, v. 57, p. 9–17. doi: 10.1016/j.jsr.2016.03.004

Polícia Rodoviária Federal (2019): banco de dados. Available at: https://www.gov.br/prf/pt-br/acesso-a-informacao/dados-abertos/dados-abertos-acidentes. (visited on 5/mar/2022)

Prato, C. G.; S. Kaplan; A. Patrier and T. K. Rasmussen (2018) Considering built environment and spatial correlation in modeling pedestrian injury severity. Traffic Injury Prevention, v. 19, n. 1, p. 88–93. doi: 10.1080/15389588.2017.1329535

Rosenbloom T. (2009) Crossing at a red light: Behaviour of individuals and groups. Transportation Research Part F: Traffic Psychology and Behaviour, v. 12, n. 5, p. 389–394. doi: 10.1016/j.trf.2009.05.002

Savolainen, P. T.; F. L. Mannering; D. Lord and M. A. Quddus (2011) The statistical analysis of highway crash-injury severities: A review and assessment of methodological alternatives. Accident Analysis and Prevention, v. 43, n. 5, p. 1666–1676. doi: 10.1016/j.aap.2011.03.025

Shinar, D. (2017). Traffic safety and human behavior (2nd ed). Emerald Group Publishing.

Sze, N. N. and S. C. Wong (2007) Diagnostic analysis of the logistic model for pedestrian injury severity in traffic crashes. Accident Analysis and Prevention, v. 39, n. 6, p. 1267–1278. doi: 10.1016/j.aap.2007.03.017

Tay, R.; J. Choi; L. Kattan and A. Khan, (2011) A multinomial logit model of pedestrian–vehicle crash severity. International Journal of Sustainable Transportation, v. 5, n. 4, p. 233-249. Doi: 10.1016/j.ijtst.2018.10.001

Torres, C.; L. Sobreira; M. Castro-Neto; F. Cunto; A. Vecino-Ortiz; K. Allen; A. Hyder and A. Bachani (2020) Evaluation of pedestrian behavior on mid-block crosswalks: a case study in Fortaleza- Brazil. Frontiers in Sustainable Cities, v. 2, p. 1–6. doi: 10.3389/frsc.2020.00003

Torres, T. B.; A. M. L. Uriarte; C. P. Demore and C. T. Nodari (2017) Prevalência de fatores associados à severidade dos acidentes em entorno de escolas. Transportes, v. 25, n. 3, p. 102. doi: 10.14295/transportes.v25i3.1331

Train, K. E. 2003. Discrete choice methods with simulation, (2nd ed.). Cambridge University Press.

Wang, Y. Y.; M. M. Haque; H. C. Chin and J. G. J. Yun (2013) Injury severity of pedestrian crashes in Singapore. In Australasian Transport Research Forum, ATRF 2013 – Proceedings.

Washington, P. S.; G. M. Karlaftis and F. L. Mannering (2003) Statistical and Econometric Methods for Transportation Data Analysis. Chapman & Hall/CRC, Nova Iorque, 2003.

Yang, J. (2005) Review of injury biomechanics in car-pedestrian collisions. International Journal of Vehicle Safety, v. 1, n. 1–3, p. 100–117. doi: 10.1504/IJVS.2005.007540

Ye, F. and D. Lord (2014) Comparing three commonly used crash severity models on sample size requirements: Multinomial logit, ordered probit and mixed logit models. Analytic Methods in Accident Research, v. 1, p. 72–85. doi: 10.1016/j.amar.2013.03.001

Zafri, N. M.; A. A. Prithul; I. Baral and M. Rahman (2020) Exploring the factors influencing pedestrian-vehicle crash severity in Dhaka, Bangladesh. International Journal of Injury Control and Safety Promotion, v. 27, n. 3, p. 300-307. doi: 10.1080/17457300.2020.1774618

Zahabi, S. A. H.; K. Manaugh and L.F. Miranda-Moreno (2011) Estimating potential effect of speed limits, built environment, and other factors on severity of pedestrian and cyclist injuries in crashes. Transportation Research Record, n. 2247, p. 81–90. doi: 10.3141/2247-10

Downloads

Publicado

16-01-2023

Como Citar

Nogueira Silva, M. ., Craveiro Cunto, F. J. ., Timbó Lima Gomes, M. J. ., & Ferreira, S. (2023). Análise da gravidade de lesões de pedestres no Brasil utilizando modelos logit de parâmetros aleatórios. TRANSPORTES, 31(1). https://doi.org/10.14295/transportes.v31i1.2761

Edição

Seção

Artigos