Equipamento triaxial cíclico de grande escala para análise mecânica de lastro ferroviário

Autores

  • Antonio Hamilton Michel Merheb Escola Politécnica da Universidade de São Paulo
  • Rosângela Motta EPUSP
  • Liedi Bernucci
  • Edson Moura EPUSP
  • Robson Costa EPUSP
  • Tiago Vieira EPUSP
  • Fernando Sgavioli VALE S.A.

DOI:

https://doi.org/10.14295/transportes.v22i3.804

Palavras-chave:

Lastro ferroviário. Ensaio triaxial cíclico.

Resumo

O lastro é a camada responsável por dar suporte à superestrutura ferroviária, sendo carregada e descarregada repetidamente pela passagem dos trens. Em vista disso, a compreensão das características de tensão-deformação deste material granular que é utilizado nesta camada é importante para a otimização das operações de manutenção, garantindo um transporte eficiente e seguro. O material utilizado em camada de lastro ferroviário é normalmente constituído de frações granulométricas graúdas, com gradução uniforme, dificultando a execução de testes de grande escala em laboratório. O objetivo deste artigo é avaliar a aplicabilidade de um novo arranjo experimental empregando prensa hidráulica para ensaio triaxial de carga repetida, de grande escala de laboratório (com diâmetro de 400 mm x altura de 800 mm), que permite testar partículas de lastro em dimensões reais de campo, sem a necessidade de escalonamento e garantindo maior representatividade. Assim, é possível simular o carregamento que ocorre com a passagem de trens, a fim de se observar o comportamento do lastro quanto a deformações resilientes e permanentes. Um ensaio triaxial cíclico realizado com tal equipamento mostrou a viabilidade de preparação de corpo de prova em tais dimensões e de obtenção de resultados de módulo de resiliência e deformação permanente compatíveis com o esperado.

Downloads

Não há dados estatísticos.

Biografia do Autor

Antonio Hamilton Michel Merheb, Escola Politécnica da Universidade de São Paulo

Possui graduação em Engenharia Civil pela Universidade Federal do Pará (2011), atualmente realiza mestrado em Engenharia de Transportes pela Escola Politécnica da Universidade de São Paulo. Tem experiência em Obras de Terra e Enrocamento e Geotecnia Ambiental. Atua na área de Ferrovias; Projeto e Construção.

Referências

AASHTO T 292-91 - Interim method of test for resilient modulus of subgrade soils and untreated base/subbase materials. American Association of State Highway And Transportation Officials, Washington, D.C., 1991.

Alva-Hurtado, J. E., and Selig, E. T. Permanent strain behavior of railway ballast. Proceedings of 10th International Conference on Soil Mechanics and Foundation Engineering. Pergamon Press:New York, 543–546, 1981.

Alva-Hurtado, J. E.; Mcmahon, D. R.; Stewart, H. E. Apparatus and techniques for static triaxial testing of ballast. Laboratory Shear Strength of Soil, ASTM STP 740, R.N. Yong and F.C. Townsend, EDS., American Society for Testing and Materials, 1981, pp.94-113.

Alves, G. K. A., Sinay, M. C. F. Os dormentes ferroviários, seu tratamentos e o meio ambiente. [2005]. Disponível em: <http://www.cbtu.gov.br/estudos/pesquisa>. Acesso em:13/06/2012.

Anderson, W. F.; Fair, P. Behavior of railroad ballast under monotonic and cyclic loading. Journal of Geotechnical and Geoenvironmental Engineering, Vol. 134, No. 3, 2008. DOI: 10.1061/(ASCE)1090-0241(2008)134:3(316)

AREMA: Manual for Railway Engineering. American Railway Engineering, 2009.

ASTM C702 (2003) Standard Practice for Reducing Samples of Aggregate to Testing Size. American Society for Testing and Materials, ASTM.

ASTM D5311. Standard Test Method for load controlled cyclic triaxial strength of soil. American Society for Testing and Materials, 2004.

Aursudkij, B., Mcdowell, G. R., Collop, A. C. Cyclic Loading of Railway Ballast under Triaxial Condition in a railway test facility. In: Granular Matter, Vol. 11, No. 6, 2009, pp.391-401. DOI: 10.1007/s10035-009-0144-4

Aursudkij, B.: A Laboratory Study of Railway Ballast Behaviour under Traffic Loading and Tamping Maintenance. Thesis, The University of Nottingham, United Kingdom, 2007.

Bishop, A. W. and Green, G. E. (1965).The influence of end restraint on the compression strength of a cohesionless Soil. Geotechnique 15, pp. 243-266. DOI: 10.1680/geot.1965.15.3.243

Diyaljee, V. A.: Effects of stress history on ballast deformation. Journal of the Geotechnical Engineering, ASCE, Vol. 113, No. 8, 1987, pp. 909–914. DOI: 10.1061/(ASCE)0733-9410(1987)113:8(909)

Ebrahimi, A; Tinjum, J. M.; Edil, T. B. Large-Scale, cyclic triaxial testing of rail ballast. AREMA Annual Conference e Exposition, Orlando, 2010.

Esveld, C. Modern railway track. MRT Productions, 2001, 654p.

Fortunato, E. Renovação de Plataformas Ferroviárias. Estudos Relativos à Capacidade de Carga. PhD Thesis. Porto: University of Porto. 2005.

Indraratna, B., Thakur, P., Vinod, J. Experimental and Numerical Study of Railway Ballast Behavior under Cyclic Loading. International Journal of

Geomechanics, Vol. 10, No. 4, 2010a, pp 136-144. DOI: 10.1061/(ASCE)GM.1943-5622.0000055

Indraratna, B., Ionescu, D., Christie, D., Chowdhury, R. Compression and degradation of railway ballast under one-dimensional loading. Australian Geomechanics, 1997, pp 48-61.

Indraratna, B., Nimbalkar, S., Christie, D., Rujikiatkamjorn, C., Vinod, J. Field assessment of the performance of a balasted rail track with and without geosynthetics. Journal of the Geotechnical and Geoenvironmental Engineering, Vol. 136, No. 7, 2010b, pp. 907-917. DOI: 10.1061/(ASCE)GT.1943-5606.0000312

Indraratna, B., Salim, W. Mechanics of ballasted rail tracks: a geotechnical perspective. Taylor & Francis Group plc. Londres, 2005, 248 pp.

Indraratna, B.; Ionescu, D.; Christie. H. D. Shear Behavior of Railway ballast based on large-scale triaxial tests. Journal of Geotechnical and Geoenvironmental Engineering, Vol. 124, No. 5, 1998, p. 439-449. DOI: 10.1061/(ASCE)1090-0241(1998)124:5(439)

Indraratna, B.; Salim, W.; Rujikiatkamjorn, C. In: Advanced rail geotechnology ballasted track. Taylor & Francis Group, London, UK, 2011.

Kerr, A. D. On the Stress Analysis of rails and Ties. Bulletin

, in: Proceedings of the American Railway Engineering Association, Vol. 78, 1977, pp. 19-43.

Lackenby, J.; Indraratna, B.; Mcdowell, G.; Christie, D. Effect of confining pressure on ballast degradation and under cyclic triaxial loading. In: Géotechnique 57, No. 6, 2007, pp. 527-536. DOI:

1680/geot.2007.57.6.527

Lim, W. L. Mechanics of Railway Ballast Behaviour. PhD Thesis. University of Nottingham. 2004, 216 p.

Malysz, R. Desenvolvimento de um equipamento triaxial de grande porte para a avaliação de agregados utilizados como camada de pavimentos. 2009. 350p. Tese (Doutorado) – Programa de Pós-graduação em Engenharia Civil, Universidade Federal do Rio Grande do Sul. Porto Alegre, 2009.

Merheb, A. Análise mecânica do lastro ferroviário por meio de ensaios triaxiais cíclicos. Dissertação de Mestrado, POLI/USP, São Paulo, Brasil, 2014. 148 p.

Nalsund, R. Effect of grading on degradation of crushed-rock Railway Ballastand on Permanent Axial Deformation. Transportation Research Record, Washington, D. C., No. 2154, 2010, p.149-155.

Raymond, G. P., and Diyaljee, V. A. Railroad ballast sizing and grading. Journal of Geotechnical Engineering, ASCE, 105(5), 676-681, 1979.

Sekine, E.; Kono, A.; Kito, A. Strength and deformation characteristics of railroad ballast in ballast particle abrasion process, 2005.

Selig, E. T., Waters, J. M. Track geotechnology and substructures Management. Thomas Telford Services Ltd., Londres, 1994. 446 pp.

Sevi, A. S. Physical modelling of railroad ballast using parallel gradation scaling technique within the cyclical triaxial framework. Tese de doutorado.Missouri University of science and Technology. 2008. 137p.

Sevi, A. S.; Ge, L.; Take, W. A. A large-scale triaxial apparatus for prototyperailroad ballast testing. Geotechnical testing journal, Vol. 32, No. 4, 2009, pp.1- 8.

Skoglund, K. A., 2002, A study of Some Factors in Mechanistic Railway Track Design, Ph.D. dissertation, Norwegian University of Science and Technology.

Stewart, H.E.: Permanent strains from cyclic variable amplitude loadings. J. of Geotechnical Engineering, ASCE, Vol. 112, No. 6, 1986, pp. 646–660. DOI: 10.1061/(ASCE)0733-9410(1986)112:6(646)

Suiker, A. S. J.; Selig, E. T.; Frenkel, R. Static and cyclic triaxial testing of ballast and subballast. Journal of Geotechnical and Geoenvironmental Engineering, Vol. 131, No. 6, 2005. DOI: 10.1061/(ASCE)1090-0241(2005)131:6(771)

Talbot, A. N. Second progress report of the Special Committee on Stresses in Railroad Track. Proceedings of the AREA, Vol. 21, 1920, pp. 645-814.

Downloads

Publicado

08-09-2014

Como Citar

Merheb, A. H. M., Motta, R., Bernucci, L., Moura, E., Costa, R., Vieira, T., & Sgavioli, F. (2014). Equipamento triaxial cíclico de grande escala para análise mecânica de lastro ferroviário. TRANSPORTES, 22(3), 53–63. https://doi.org/10.14295/transportes.v22i3.804

Edição

Seção

Artigos