Assessment of the impact of electronic speed and red-light camera enforcement on road safety: a before-and-after study using the Empirical Bayes Method
DOI:
https://doi.org/10.58922/transportes.v33.e3040Keywords:
Road safety. Empirical bayes method. Universal kriging. Before-and-after studies.Abstract
Automated enforcement strategies are commonly employed at signalized intersections to minimize traffic incidents. The actual impact of these strategies can vary between jurisdictions and lacks observational studies that address methodological challenges such as the regression-to-the-mean phenomenon and the time limitation of the observed period. This study evaluates the effects of electronic speed and red-light enforcement at signalized intersections on road safety performance using the Empirical Bayes (EB) Method. Using a total analysis period from 2010 to 2019, a Safety Performance Function (SPF) was developed for crashes with victims in 2011 based on vehicle flow (AADT) and the number of lanes, using a sample of 176 intersections in Fortaleza. The SPF (2011) was transferred to the other years of the analysis by adjusting the intercept correction obtained using the method proposed in the Highway Safety Manual. The results indicated a 21% reduction (8%, 33%; CI=95%) in crashes with injured and fatal victims, similar to the findings from using a comparison group and slightly better than those found in the international literature. The results and the application of the methodology help reinforce the effectiveness of installing enforcement devices at signalized intersections and contribute to improving ‘before-and-after’ observational studies in the Brazilian context.
Downloads
References
AASHTO (2010) Highway Safety Manual. Washington, D.C.: American Association of State Highway and Transportation Officials.
Ahmed, M.M. e M. Abdel-Aty (2015) Evaluation and spatial analysis of automated red-light running enforcement cameras. Transportation Research Part C, Emerging Technologies, v. 50, p. 130-140. DOI: 10.1016/j.trc.2014.07.012. DOI: https://doi.org/10.1016/j.trc.2014.07.012
Bailey, T.C. e A.C. Gatrell (1995). Interactive Spatial Data Analysis. Harlow, England: Prentice Hall.
Christie, S.M.; R.A. Lyons; F.D. Dunstan et al. (2003) Are mobile speed cameras effective? A controlled before and after study. Injury Prevention, v. 9, n. 4, p. 302-326. DOI: 10.1136/ip.9.4.302. PMid:14693888. DOI: https://doi.org/10.1136/ip.9.4.302
Claros, B.; C. Sun e P. Edara (2016) Safety effectiveness and crash cost benefit of red light cameras in Missouri. Traffic Injury Prevention, v. 18, n. 1, p. 70-76. DOI: 10.1080/15389588.2016.1188203. PMid:27348043. DOI: https://doi.org/10.1080/15389588.2016.1188203
Contini, L. e K. El-Basyouny (2016) Lesson learned from the application of intersection safety devices in Edmonton. Accident; Analysis and Prevention, v. 94, p. 127-134. DOI: 10.1016/j.aap.2016.05.023. PMid:27286175. DOI: https://doi.org/10.1016/j.aap.2016.05.023
Cunto, F.J.C.; Nodari, C.T. e Barbosa, H.M. (2014) Transferência de modelos de previsão de acidentes entre cidades brasileiras. Transportes, v. 22, n. 3, p. 76-85. Disponível em: <https://doi.org/10.14295/transportes.v22i3.790>. DOI: https://doi.org/10.14295/transportes.v22i3.790
De Pauw, E.; S. Daniels; T. Brijs et al. (2014) To brake or to accelerate? Safety effects of combined speed and red light cameras. Journal of Safety Research, v. 50, p. 59-65. DOI: 10.1016/j.jsr.2014.03.011. PMid:25142361. DOI: https://doi.org/10.1016/j.jsr.2014.03.011
Elvik, R. (2008) The predictive validity of empirical Bayes estimates of road safety. Accident Analysis & Prevention, v. 40, n. 5, p. 1964-1969. DOI: 10.1016/j.aap.2008.05.008. DOI: https://doi.org/10.1016/j.aap.2008.07.007
Elvik, R. (2011) Developing an accident modification function for speed enforcement. Safety Science, v. 49, n. 6, p. 920-925. DOI: 10.1016/j.ssci.2011.02.016. DOI: https://doi.org/10.1016/j.ssci.2011.02.016
Eom, J.K.; M.S. Park; T.Y. Heo et al. (2006) Improving the prediction of annual average daily traffic for non freeway facilities by applying a spatial statistical method, Transportation Research Record: Journal of the Transportation Research Board, v. 1968, n. 1, p. 20-9. DOI: 10.1177/0361198106196800103. DOI: https://doi.org/10.1177/0361198106196800103
FHWA (2021) Intersection safety. Disponível em: <https://www.fhwa.dot.gov/research>. (acesso em 15/08/2024).
Gu, Y.; D. Liu; R. Arvin et al. (2023) Predicting intersection crash frequency using connected vehicle data: a framework for geographical random forest. Accident Analysis & Prevention, v. 179, p. 106880. DOI: 10.1016/j.aap.2022.106880. PMid:36345113. DOI: https://doi.org/10.1016/j.aap.2022.106880
Hakkert, A.S.; L. Hocherman e A. Mensah (1996) Levels of safety on interurban roads. Transportation Research Record, v. 1553, n. 1, p. 95-102. DOI: 10.1177/0361198196155300114. DOI: https://doi.org/10.1177/0361198196155300114
Hauer, E. (1997) Observational before-after studies in road safety. Oxford: Pergamon Press, Elsevier Science Ltd.
Hauer, E.; D. Harwood; F. Council et al. (2002) Estimating safety by the empirical Bayes method: a tutorial. Transportation Research Record: Journal of the Transportation Research Board, v. 1784, n. 1, p. 126-131. DOI: 10.3141/1784-16. DOI: https://doi.org/10.3141/1784-16
Hollander, Y. e R. Liu (2008) The principles of calibrating traffic microsimulation models. Transportation, v. 35, n. 3, p. 347-362. DOI: 10.1007/s11116-007-9156-2. DOI: https://doi.org/10.1007/s11116-007-9156-2
Hoye, A. (2015) Safety Effects of Section Control: An Empirical Bayes Evaluation. Oslo: Institute of Transport Economics, Department of Safety, Security and Environment. DOI: https://doi.org/10.1016/j.aap.2014.10.016
Hu, W. e J.B. Cicchino (2017) Effects of turning on and off red light cameras on fatal crashes in large U.S. cities. Journal of Safety Research, v. 61, p. 141-148. DOI: 10.1016/j.jsr.2017.02.019. PMid:28454859. DOI: https://doi.org/10.1016/j.jsr.2017.02.019
Kim, S.; D. Park; T.-Y. Heo et al. (2016) Estimating vehicle miles traveled (VMT) in urban areas using regression kriging. Journal of Advanced Transportation, v. 50, n. 5, p. 769-785. DOI: 10.1002/atr.1374. DOI: https://doi.org/10.1002/atr.1374
Ko, M.; S.R. Geedipally; T.D. Walden et al. (2017) Effects of red light running camera systems installation and then deactivation on intersection safety. Journal of Safety Research, v. 62, p. 117-126. DOI: 10.1016/j.jsr.2017.06.010. PMid:28882258. DOI: https://doi.org/10.1016/j.jsr.2017.06.010
Kumphong, J.; T. Satiennam; W. Satiennam et al. (2019) Change of motorcycle speed under speed enforcement camera on urban arterial in Khon Kaen City, Thailand. International Journal of GEOMATE, v. 16, n. 56, p. 159-164. DOI: 10.21660/2019.56.4746. DOI: https://doi.org/10.21660/2019.56.4746
Li, H.; D.J. Graham e A. Majumdar (2013) The impacts of speed cameras on road accidents: an application of propensity score matching methods. Accident Analysis & Prevention, v. 60, p. 148-157. DOI: 10.1016/j.aap.2013.08.003. PMid:24056286. DOI: https://doi.org/10.1016/j.aap.2013.08.003
Llau, A.F.; N.U. Ahmed; H.M.R.U. Khan et al. (2015) The impact of red light cameras on crashes within Miami–Dade County, Florida. Traffic Injury Prevention, v. 16, n. 8, p. 773-780. DOI: 10.1080/15389588.2015.1023896. DOI: https://doi.org/10.1080/15389588.2015.1023896
Lord, D. e S.R. Geedipally (2014) Safety Effects of the Red-light Camera Enforcement Program in Chicago, Illinois. Final version. Illinois: Chicago Tribune. Research Report prepared for the Chicago Tribune.
Mahmassani, H.S.; J.L. Schofer; B.L. Johgnson et al. (2017) Chicago Red Light Enforcement. Best Practices and Program Road Map. Evanston: Northwestern University, The Transportation Center.
Mathew, S. e S.S. Pulugurtha (2021) Comparative assessment of geospatial and statistical methods to estimate local road annual average daily traffic. Journal of Transportation Engineering, Part A: Systems, v. 147, n. 7, p. 04021035. DOI: 10.1061/JTEPBS.0000542. DOI: https://doi.org/10.1061/JTEPBS.0000542
McCartt, A.T. e Hu, W. (2014) Effects of red light camera enforcement on red light violations in Arlington County, Virginia. Journal of Safety Research, v. 48, p. 57-62. DOI: 10.1016/j.jsr.2013.12.00. DOI: https://doi.org/10.1016/j.jsr.2013.12.001
Nunes, P.B.S.; F.J.C. Cunto e S.F. Marques (2023) Estimação do volume de tráfego em interseções de fortaleza com base na Krigagem Universal. In: Anais do congresso de pesquisa e ensino em transportes. Santos: ANPET. Anais eletrônicos. Disponível em: . (acesso em: 21/08/2024)
OMS (2023) Global Status Report on Road Safety 2023. Geneva: OMS. Disponível em: <https://www.who.int/publications/i/ item/9789241565684>. (acesso em 04/07/2024).
Peña, C.C. (2011) Caracterização e análise dos acidentes em interseções: Estudo de caso em rodovias de Santa Catarina. Dissertação (mestrado). Programa de Pós-graduação em Engenharia Civil, Centro Tecnológico, Universidade Federal de Santa Catarina.
Persaud, B. e Lyon, C. (2007) Empirical Bayes before–after safety studies: lessons learned from two decades of experience and future directions. Accident Analysis & Prevention, v. 39, n. 3, p. 548-558. DOI: 10.1016/j.aap.2006.09.009. DOI: https://doi.org/10.1016/j.aap.2006.09.009
Retting, R.A. e S.Y. Kyrychenko (2002) Reductions in injury crashes associated with red light camera enforcement in Oxnard, California. American Journal of Public Health, v. 92, n. 11, p. 1822-5. DOI: 10.2105/AJPH.92.11.1822. PMid:12406815. DOI: https://doi.org/10.2105/AJPH.92.11.1822
Reyad, P.; E. Sacchi e T. Sayed (2017) Traffic conflict–based before–after study with use of comparison groups and the empirical Bayes method. Transportation Research Record: Journal of the Transportation Research Board, v. 2659, n. 1, p. 15-25. DOI: 10.3141/2659-02. DOI: https://doi.org/10.3141/2659-02
Sawalha, Z. e T. Sayed (2006) Traffic accident modeling: some statistical issues. Canadian Journal of Civil Engineering, v. 33, n. 9, p. 1115-1124. DOI: 10.1139/l06-056. DOI: https://doi.org/10.1139/l06-056
Walden, T.D.; S.R. Geedipally; M. Ko et al. (2012) Evaluation of automated traffic enforcement systems in Texas. Austin: Traffic Operations Division, Texas Department of Transportation. Disponível em: <http://ftp.dot.state.tx.us/pub/txdot-info/trf/ red_light/auto_traffic.pdf>. (acesso em 04/07/2024).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Paulo Bruno Souza Nunes, Flávio José Craveiro Cunto

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who submit papers for publication by TRANSPORTES agree to the following terms:
- Authors retain copyright and grant TRANSPORTES the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors may enter into separate, additional contractual arrangements for the non-exclusive distribution of this journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in TRANSPORTES.
- Authors are allowed and encouraged to post their work online (e.g., in institutional repositories or on their website) after publication of the article. Authors are encouraged to use links to TRANSPORTES (e.g., DOIs or direct links) when posting the article online, as TRANSPORTES is freely available to all readers.
- Authors have secured all necessary clearances and written permissions to published the work and grant copyright under the terms of this agreement. Furthermore, the authors assume full responsibility for any copyright infringements related to the article, exonerating ANPET and TRANSPORTES of any responsibility regarding copyright infringement.
- Authors assume full responsibility for the contents of the article submitted for review, including all necessary clearances for divulgation of data and results, exonerating ANPET and TRANSPORTES of any responsibility regarding to this aspect.