Laboratory and statistical evaluation of the microstructural characteristics of Sand Asphalt Mortar

Authors

DOI:

https://doi.org/10.58922/transportes.v32i3.3014

Keywords:

Laboratory tests, Asphalt binder, Air void content, Binder film thickness, Digital image processing

Abstract

One of the problems encountered in asphalt pavements is fatigue damage, which is related to the type of aggregate, the rheology of the asphalt binder and its chemical composition, resulting in the emergence of microcracks and, subsequently, macrocracks. Therefore, this phenomenon needs to be studied from the asphalt binder scale to the complete asphalt mixture. In this sense, this paper focuses on the asphalt binder scale with the objective of investigating the microstructural characteristics of cylindrical samples of Sand Asphalt Mortar (SAM). These samples can be made up of standard sand and any type of asphalt binder. The use of SAM can contribute to obtaining laboratory rheological results representing the real binder film thickness that exists in an asphalt mixture. In this study, SAM samples composed of a polymer binder without aging were compacted with a manual press, resulting in cylindrical specimens with 40 mm of height and 12.5 mm of diameter. Its microstructure was investigated by determining the air voids (AV) and the binder film thickness (FT), considering different binder contents: 6%, 8% and 10% by weight. The results indicated that the samples made with 6% binder present homogeneity in terms of microstructural parameters, and represents more realistically the binder film thickness that will exist in a complete asphalt mixture, can be used in oscillatory tests carried out on the dynamic shear rheometer, and contribute to studies on the asphalt binders.

Downloads

Download data is not yet available.

Author Biographies

Pamella Parreira de Miranda, Federal University of Goiás

Programa de Pós-Graduação em Geotecnia, Estruturas e Construção Civil

Tallyta da Silva Curado, Federal Institute of Education, Science and Technology of Goiás

Departamento de Áreas Acadêmicas

Lilian Ribeiro de Rezende, Federal University of Goiás

Programa de Pós-Graduação em Geotecnia, Estruturas e Construção Civil

References

AASHTO (2019) T 350-19: Standard method of test for multiple stress creep recovery (MSCR). Washington: AASHTO.

AASHTO (2020) T 391: Standard method of test for estimating fatigue resistance of asphalt binders using the linear amplitude sweep. Washington: AASHTO.

AASHTO (2021) T315: Standard Method of Test for Determining the Rheologic properties of Asphalt Binder Using a Dynamic Shear Rheometer (DSR). Washington: AASHTO.

ABNT (2012) NBR6296: Produtos betuminosos semissólidos – Determinação da massa específica e densidade relativa. Rio de Janeiro: ABNT.

ABNT (2021) NBR15184: Materiais betuminosos – Determinação da viscosidade em temperaturas elevadas usando um viscosímetro rotacional. Rio de Janeiro: ABNT.

ANP (2022). Resolução ANP nº 897, de 18 de Novembro de 2022. Dispõe sobre as especificações dos asfaltos e dos aditivos asfálticos de reciclagem para misturas à quente, e suas regras de comercialização em todo o território nacional. Diário Oficial da República Federativa do Brasil. Brasília. Available at: <https://www.in.gov.br/en/web/dou/-/resolucao-anp-n-897-de-18- de-novembro-de-2022-445759308> (accessed 05/13/2024).

ASTM (2015) D7175: Standard Test Method for Determining the Rheological Properties of Asphalt Binder Using a Dynamic Shear Rheometer. West Conshohocken: ASTM.

ASTM (2020) D7405: Standard Test Method for Multiple Stress Creep and Recovery (MSCR) Of Asphalt Binder Using a Dynamic Shear Rheometer. West Conshohocken: ASTM.

ASTM (2021) C778: Standard Specification for Standard Sand. West Conshohocken: ASTM.

Bernucci, L.B.; L.M.G. Motta; J.A.P. Ceratti et al. (2022) Pavimentação Asfáltica – Formação Básica para Engenheiros (2a ed.). Rio de Janeiro: PETROBRAS – ABEDA.

Chen, H.; J. Jiang and H.U. Bahia (2022) Characterization of mortar film distribution of asphalt mixtures containing reclaimed asphalt pavement and its relationship with fracture performance using image analysis method, Construction & Building Materials, v. 145, p. 128338-50. DOI: 10.1016/j.conbuildmat.2022.128338. DOI: https://doi.org/10.1016/j.conbuildmat.2022.128338

Curado, T.S.; K.P. Melo; L.R. Rezende et al. (2023) Equipamento e Método para a Produção de Amostra Cilíndrica do Tipo Argamassa Areia-asfalto - Patente BR102023025702-0. Avaiable at: <https://busca.inpi.gov.br/pePI/servlet/PatenteServletControlle r?Action=detail&CodPedido=1728438&SearchParameter=BR%2010%202023%20025702-0%20%20%20%20%20%20 &Resumo=&Titulo> (accessed 05/13/2024).

Curado, T.S.A.B.; J.H.G. Klug; R.C. Pioli et al. (2021) Study of maximum specific gravity of fine aggregate matrices: a comparison of sample sizes and density determination procedures. In: Anais do 35° Congresso de Pesquisa e Ensino em Transporte (100% Virtual). ANPET, p. 1036-1048.

DNIT (2010a) ME 131: Materiais asfálticos – Determinação do ponto de amolecimento – Método do Anel e Bola – Método de ensaio. Brasília: DNIT.

DNIT (2010b) ME 155: Material asfáltico – Determinação da penetração – Método de ensaio. Brasília: DNIT.

DNIT (2020) ME 427: Misturas asfálticas - Determinação da densidade relativa máxima medida e da massa específica máxima medida em amostras não compactadas - Método de Ensaio. Brasília: DNIT.

DNIT (2022a) ME 439: Avaliação da resistência à fadiga de ligantes asfálticos usando varredura de amplitude linear (LAS- Linear Amplitude Sweep) – Método de Ensaio. Brasília: DNIT.

DNIT (2022b) ME 428: Misturas asfálticas - Determinação da densidade relativa aparente e da massa específica aparente de corpos de prova compactados - Método de Ensaio. Brasília: DNIT.

Elseifi, M.A.; I.L. Al-Qadi; S.-H. Yang et al. (2008) Validity of asphalt binder film thickness concept in hot-mix asphalt, Transportation Research Record: Journal of the Transportation Research Board, v. 2057, n. 1, p. 37-45. DOI: 10.3141/2057-05. DOI: https://doi.org/10.3141/2057-05

Ferreira, T. and W. Rasband (2012) ImageJ User Guide ImageJ User Guide IJ 1.46r. 187 p. Available at: < http://fiji.sc/guide.git> (accessed 05/13//2024).

Ferreira, V. (2015) Estatística Básica. Rio de Janeiro: SESES.

Fonseca, J.F.; J.E. Sudo Lutif Teixeira; V.T.F. Castelo Branco et al. (2019) Evaluation of Effects of filler by-products on fine aggregate matrix viscoelasticity and fatigue-fracture characteristics, Journal of Materials in Civil Engineering, v. 31, n. 10, p. 1-10. DOI: 10.1061/(ASCE)MT.1943-5533.0002891. DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0002891

Furtado, G.L.; L.Z. Alves (2021) Estudo para produção de amostras do tipo Sand Asphalt Mortar (SAM). Trabalho de Conclusão de Curso (graduação). Universidade Federal de Goiás, Goiânia, GO.

Gonçalves, Y. (2021) Avaliação da Volumetria de Corpos de Prova de Sand Asphalt Mortar Produzidos com Mini Compactador Manual. Trabalho de Conclusão de Curso (graduação). Universidade Federal de Goiás, Goiânia, GO.

Huang, W.; Q. Lv and F. Xiao (2016) Investigation of using binder bond strength test to evaluate adhesion and self-healing properties of modified asphalt binders, Construction & Building Materials, v. 113, p. 49-56. DOI: 10.1016/j.conbuildmat.2016.03.047. DOI: https://doi.org/10.1016/j.conbuildmat.2016.03.047

INPI (2023) Privilégio de Inovação - Patente BR102023025702-0. Available at: <https://busca.inpi.gov.br/pePI/servlet/Patente ServletController?Action=detail&CodPedido=1728438&SearchParameter=BR%2010%202023%20025702-0%20%20%20 %20%20%20&Resumo=&Titulo> (accessed 05/13/2024).

Kim, Y.R.; D.N. Little and I. Song (2003) Effect of mineral fillers on fatigue resistance and fundamental material characteristics: mechanistic evaluation. Transportation Research Record: Journal of the Transportation Research Board, n. 1832, p. 1-8. DOI: https://doi.org/10.3141/1832-01

Kim, Y.R.; D.N. Little and R.L. Lytton (2003) Fatigue and healing characterization of asphalt mixtures, Journal of Materials in Civil Engineering, v. 15, n. 1, p. 75-83. DOI: 10.1061/(ASCE)0899-1561(2003)15:1(75). DOI: https://doi.org/10.1061/(ASCE)0899-1561(2003)15:1(75)

Kim, Y.R.; D.N. Little and R.L. Lytton (2004) Effect of moisture damage on material properties and fatigue resistance of asphalt mixtures. Transportation Research Record: Journal of the Transportation Research Board, n. 1891, p. 48-54. DOI: https://doi.org/10.3141/1891-07

Kommidi, S.R.; Y.-R. Kim and L.R. Rezende (2020) Fatigue characterization of binder with aging in two length scales: sand asphalt mortar and parallel plate binder film, Construction & Building Materials, v. 237, p. 117588-98. DOI: 10.1016/j.conbuildmat.2019.117588. DOI: https://doi.org/10.1016/j.conbuildmat.2019.117588

Morettin, P.A. and W.O. Bussab (2010) Estatística Básica (6a ed.). São Paulo: Saraiva.

Osmari, P.H.; R.F. da Costa; F.T.S. Aragão et al. (2020) Determination of volumetric characteristics of fam mixtures using x-ray micro-computed tomography and their effects on the rheological behavior of the material, Transportation Research Record: Journal of the Transportation Research Board, v. 2674, n. 5, p. 97-107. DOI: 10.1177/0361198120914607. DOI: https://doi.org/10.1177/0361198120914607

Radovskiy, B. (2003) Analytical formulas for film thickness in compacted asphalt mixture. Transportation Research Record: Journal of the Transportation Research Board, v. 1829, n. 1, p. 26-32. DOI: 10.3141/1829-04. DOI: https://doi.org/10.3141/1829-04

Rezende, L.R.; S.R. Kommidi and Y.R. Kim et al. (2021) Strain sweep fatigue testing of sand asphalt mortar to investigate the effects of sample geometry, binder film thickness, and testing temperature, Transportation Research Record: Journal of the Transportation Research Board, v. 2675, n. 10, p. 516-29. http://doi.org/10.1177/03611981211011646. DOI: https://doi.org/10.1177/03611981211011646

Souza, L.A. (2022) Avaliação das Características de Amostras do Tipo Sand Asphalt Mortar (SAM) Compostas com CAP 30/45. Trabalho de Conclusão de Curso (graduação). Universidade Federal de Goiás, Goiânia, GO.

Vieira, L.H.; T.D. de Souza; A.J. Enríquez-León et al. (2021) Experimental testing and analysis procedure to determine the apparent film thickness of asphalt binder in fine aggregate matrix mixtures, Transportation Research Record: Journal of the Transportation Research Board, v. 2675, n. 7, p. 166-79. DOI: 10.1177/0361198121994856. DOI: https://doi.org/10.1177/0361198121994856

Downloads

Published

2024-12-23

How to Cite

Miranda, P. P. de, Curado, T. da S., & Rezende, L. R. de. (2024). Laboratory and statistical evaluation of the microstructural characteristics of Sand Asphalt Mortar. TRANSPORTES, 32(3), e3014. https://doi.org/10.58922/transportes.v32i3.3014

Issue

Section

Artigos