Development of a flexible pavement temperature profile prediction model

Authors

  • Cléber Faccin Universidade Federal de Santa Maria/Doutorando
  • Luciano Pivoto Specht Universidade Federal de Santa Maria/Professor associado
  • Deividi Da Silva Pereira Universidade Federal de Santa Maria/Professor Titular
  • Silvio Lisboa Schuster Universidade Federal de Santa Maria/Professor adjunto
  • Chaveli Brondani Universidade Federal de Santa Maria/Doutora
  • Gabriella Gaube Guex Universidade Federal de Santa Maria/Aluno de Graduação
  • Pablo Menezes Vestena North Carolina State University/PhD Student

DOI:

https://doi.org/10.58922/transportes.v32i2.2984

Keywords:

Numerical model, Temperature, Flexible pavement, Thermal properties

Abstract

The prediction of temperature profile and history is necessary for the analysis and design of flexible pavements. Pavement performance is influenced by local weather conditions and pavement temperature is a crucial aspect, especially in a scenario of climate change indicating rising temperatures in Brazil. In addition to impacting the mechanical properties and performance of asphalt pavements, temperature can substantially affect the environment, causing a phenomenon known as the urban heat island. In this context, this article describes the development of a one-dimensional numerical model to calculate temperature profiles of flexible pavements. The model uses climatic data such as solar radiation, air temperature, dew point temperature, and wind speed, while considering the thermal properties of the materials used. It is based on the principles of energy balance between the pavement and its surroundings and includes the analysis of pavements with up to 4 layers. The aim is to provide a consistent alternative for predicting pavement temperature variations and studying the impact of heat transfer on asphalt pavements and the environment. The model was compared with an analytical solution and validated with data measured in another study available in the literature and data modeled in EICM, demonstrating good agreement with the simulated data. The results demonstrate the importance of thermophysical properties on pavement temperatures. It can be stated that the model is suitable for incorporation into tools for calculating flexible pavement temperatures and studying urban heat islands.

Downloads

Download data is not yet available.

References

Alavi, M.Z.; M.R. Pouranian e E.Y. Hajj (2014) Prediction of asphalt pavement temperature profile with finite control volume method. Transportation Research Record: Journal of the Transportation Research Board, v. 2456, n. 1, p. 96-106. DOI: 10.3141/2456-10. DOI: https://doi.org/10.3141/2456-10

Aletba, N.; R. Abdul Hassan; E. Putra Jaya et al. (2021) Thermal performance of coolingstrategies for asphalt pavement: a state-of-the-art review. Journal of Traffic and Transportation Engineering, v. 8, n. 3, p. 356-373. DOI: 10.1016/j.jtte.2021.02.001. DOI: https://doi.org/10.1016/j.jtte.2021.02.001

Allen, R.; L.S. Pereira; D. Raes et al. (2006) Evapotranspiración del Cultivo Guías para la Determinación de los Requerimientos de Agua de los Cultivos. Rome: FAO. Estudio FAO Riego y Drenaje, Pt A, v. 56, p. 56. Disponível em: <https://openknowledge.fao. org/server/api/core/bitstreams/8802ddc9-86b6-4f13-96b7-4871dd3aee65/content> (acesso em 28/05/2024).

Alvares, C.A.; J.L. Stape; P.C. Sentelhas et al. (2013) Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift (Berlin), v. 22, n. 6, p. 711-728. DOI: 10.1127/0941-2948/2013/0507. DOI: https://doi.org/10.1127/0941-2948/2013/0507

Anand, J. e D.J. Sailor (2022) Role of pavement radiative and thermal properties in reducing excess heat in cities. Solar Energy, v. 242, p. 413-423. DOI: 10.1016/j.solener.2021.10.056. DOI: https://doi.org/10.1016/j.solener.2021.10.056

Andrey, J.; D. Hambly; B. Mills et al. (2013) Insights into driver adaptation to inclement weather in Canada. Journal of Transport Geography, v. 28, p. 192-203. DOI: 10.1016/j.jtrangeo.2012.08.014. DOI: https://doi.org/10.1016/j.jtrangeo.2012.08.014

AZMET: The Arizona Meteorological Network (2023) AZMET Weather Data. Disponível em: <https://cales.arizona.edu/AZMET/ az-data.htm> (acesso em 15/12/2023).

Barros, L.M.; L.A.H. Nascimento; F.T.S. Aragão et al. (2022) Characterization of the permanent deformation of asphalt mixtures based on indexes and on pavement structural performance. Construction & Building Materials, v. 326, p. 126555. DOI: 10.1016/j. conbuildmat.2022.126555. DOI: https://doi.org/10.1016/j.conbuildmat.2022.126555

Bryce, J. e Z. Ihnat (2022) Improved models of solar radiation and convective heat transfer for pavement temperature prediction. The International Journal of Pavement Engineering, v. 23, n. 7, p. 2123-2134. DOI: 10.1080/10298436.2020.1843037. DOI: https://doi.org/10.1080/10298436.2020.1843037

Bryce, J.; A. Chattopadhyay; M. Esmaeilpour et al. (2021) Detailing an improved heat transfer model for pavements. Transportation Research Record: Journal of the Transportation Research Board, v. 2675, n. 7, p. 153-165. DOI: 10.1177/0361198121994847. DOI: https://doi.org/10.1177/0361198121994847

Chaves, B.S. (2021) Análise da Influência da Temperatura na Previsão de Desempenho à Fadiga de Pavimentos Asfálticos a Partir da Modelagem Viscoelástica. Dissertação (mestrado). Programa de pós-graduação em Engenharia Civil, Universidade Federal de Santa Maria, Santa Maria, RS. Disponível em: https://repositorio.ufsm.br/handle/1/22963 (acesso em 10/12/2023).

Chen, J.; H. Wang e P. Xie (2019) Pavement temperature prediction: theoretical models and critical affecting factors. Applied Thermal Engineering, v. 158, p. 113755. DOI: 10.1016/j.applthermaleng.2019.113755. DOI: https://doi.org/10.1016/j.applthermaleng.2019.113755

Chong, W.; R. Tramontini e L.P. Specht (2009). Application of the laplace transform and its numerical inversion to temperature profile of a two-layer pavement under site conditions. Numerical Heat Transfer, Part A: Applications, v. 55, p. 1004-1018. DOI: 10.1080/10407780903014194. DOI: https://doi.org/10.1080/10407780903014194

Cunha, M.B.; J.R. Escalante Zegarra e J.L. Fernandes Jr. (2007) Revisão da seleção do grau de desempenho (PG) de ligantes asfálticos por estados do Brasil. In Anais do 21° Congresso de Pesquisa e Ensino em Transportes. Rio de Janeiro: ANPET, p. 933-943.

Dempsey, B.J. (1969) A Heat-transfer Model for Evaluating Frost Action and Temperature Relate deffects in Multilayered Pavement Systems. Tese (doutorado). Universidade de Illinois, Urbana, Illinois. Disponível em: < https://www.proquest.com/openview/ 979236f811380ae5082e695600ace434/1?pq-origsite=gscholar&cbl=18750&diss=y> (acesso em 08/12/2023).

Durham, S.A.; B. Cetin; C.W. Schwartz et al. (2021) Improvement of Climate Data for Use in MEPDG Calibration and Other Pavement Analysis – Phase II. Disponível em: <https://rosap.ntl.bts.gov/view/dot/58948> (acesso em 08/12/2023).

Faccin, C.; L.P. Specht; L.C. Pacheco et al. (2023) Plataforma online para aquisição dos dados climáticos da reanálise merra-2 da NASA a serem utilizados em projetos de pavimentação. In Anais do 25o Encontro Nacional de Conservação Rodoviária (ENACOR), 48a Reunião Anual de Pavimentação (RAPv). Curitiba: DER Paraná, p. 100-109. DOI: DOI: 10.29327/1304307.48-10. DOI: https://doi.org/10.29327/1304307.48-10

Faccin, C.; L.P. Specht; S.L. Schuster et al. (2021a) Flow number parameter as a performance criteria for asphalt mixtures rutting: evaluation to mixes applied in Brazil Southern region. The International Journal of Pavement Engineering. v. 23, n. 9, p. 3055- 3067. DOI: 10.1080/10298436.2021.1880580. DOI: https://doi.org/10.1080/10298436.2021.1880580

Faccin, C.; S.L. Schuster; P.O.B. Almeida Jr. et al. (2021b) Mapas de Grau de Desempenho (PG) de ligantes asfálticos para o Brasil. In Anais do 35° Congresso de Pesquisa e Ensino em Transportes. Rio de Janeiro: ANPET, p. 933-943.

Gelaro, R.; W. McCarty; M.J. Suárez et al. (2017) The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). Journal of Climate, v. 30, n. 13, p. 5419-5454. DOI: 10.1175/JCLI-D-16-0758.1. PMid:32020988. DOI: https://doi.org/10.1175/JCLI-D-16-0758.1

Gopisetti, L.S.P.; B. Cetin; B.A. Forman et al. (2019) Evaluation of four different climate sources on pavement mechanistic-empirical design and impact of surface shortwave radiation. The International Journal of Pavement Engineering, v. 22, n. 9, p. 1155-1168. DOI: 10.1080/10298436.2019.1665180. DOI: https://doi.org/10.1080/10298436.2019.1665180

Gudipudi, P.P.; B.S. Underwood e A. Zalghout (2017) Impact of climate change on pavement structural performance in the United States. Transportation Research Part D, Transport and Environment, v. 57, p. 172-184. DOI: 10.1016/j.trd.2017.09.022. DOI: https://doi.org/10.1016/j.trd.2017.09.022

Gui, J.; P.E. Phelan; K.E. Kaloush et al. (2007) Impact of pavement thermophysical properties on surface temperatures. Journal of Materials in Civil Engineering, v. 19, n. 8, p. 683-690. DOI: 10.1061/(ASCE)0899-1561(2007)19:8(683). DOI: https://doi.org/10.1061/(ASCE)0899-1561(2007)19:8(683)

Hall, M.R.; P.K. Dehdezi; A.R. Dawson et al. (2011) Influence of the thermophysical properties of pavement materials on the evolution of temperature depth profiles in different climatic regions. Journal of Materials in Civil Engineering, v. 24, n. 1, p. 32-47. DOI: 10.1061/(ASCE)MT.1943-5533.0000357. DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0000357

Han, R.; X. Jin e C.J. Glover (2011) Modeling pavement temperature for use in binder oxidation models and pavement performance prediction. Journal of Materials in Civil Engineering, v. 23, n. 4, p. 351-359. DOI: 10.1061/(ASCE)MT.1943-5533.0000169. DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0000169

Hermansson, Å. (2004) Mathematical model for paved surface summer and winter temperature: comparison of calculated and measured temperatures. Cold Regions Science and Technology, v. 40, n. 1-2, p. 1-17. DOI: 10.1016/j.coldregions.2004.03.001. DOI: https://doi.org/10.1016/j.coldregions.2004.03.001

INMET 2024. Disponível em: <https://bdmep.inmet.gov.br> (acesso em 15/12/2023).

Kang, W.; P. Li; J. Chen et al. (2022) Cooling high-speed railway slab tracks with solar reflective coatings: a feasibility study. Journal of Materials in Civil Engineering, v. 34, n. 5, p. 04022067. DOI: 10.1061/(ASCE)MT.1943-5533.0004211. DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0004211

K̈oppen, W.; E. Volken e S. Brönnimann (2011) The thermal zones of the Earth according to the duration of hot, moderate and cold periods and to the impact of heat on the organic world. Meteorologische Zeitschrift (Berlin), v. 20, n. 3, p. 351-360. DOI: 10.1127/0941-2948/2011/105. DOI: https://doi.org/10.1127/0941-2948/2011/105

Leite, L. F. e I.A. Tonial (1994) Qualidade dos cimentos asfálticos brasileiros segundo as especificações SHRP. In Anais do 12o Encontro do Asfalto do Instituto Brasileiro de Petróleo. Rio de Janeiro: IBP, p. 94-103. Disponível em: <https://repositorio.ufsc. br/handle/123456789/214816> (acesso em 10/11/2023).

Lopes, T.A.S. (2019) Análise do Efeito da Sazonalidade da Temperatura e do Tráfego no Desempenho de Pavimentos Flexíveis: Segmentos Monitorados de Araranguá-SC. Dissertação (mestrado). Programa de Pós-graduação em Engenharia Civil, Universidade Federal de Santa Catarina, Florianópolis, SC. Disponível em: <https://repositorio.ufsc.br/handle/123456789/214816> (acesso em 10/11/2023). DOI: https://doi.org/10.36229/978-65-5866-228-0.CAP.23

Lukanen, E.; R. Stubstad e R. Briggs (2000) Temperature Predictions and Adjustment Factors for Asphalt Pavement, FHWA-RD-98-085, McLean, VA: FHWA.

Mammeri, A.; L. Ulmet; C. Petit et al. (2015) Temperature modelling in pavements: the effect of long- and short-wave radiation. The International Journal of Pavement Engineering, v. 16, n. 3, p. 198-213. DOI: 10.1080/10298436.2014.937809. DOI: https://doi.org/10.1080/10298436.2014.937809

Matini, N.; S. Gulzar; S. Underwood et al. (2022) Evaluation of structural performance of pavements under extreme events: flooding and heatwave case studies. Transportation Research Record: Journal of the Transportation Research Board, v. 2676, n. 7, p. 233- 248. DOI: http://doi.org/10.1177/03611981221077984 DOI: https://doi.org/10.1177/03611981221077984

Medina, J. DE e L.M.G DA Motta (2015) Mecânica dos pavimentos (3ª ed.). Rio de Janeiro, RJ: Interciência.

Moreno-Navarro, F.; M.C. Rubio-Gámez; R. Miró et al. (2015) The influence of temperature on the fatigue behaviour of bituminous materials for pavement rehabilitation. Road Materials and Pavement Design, v. 16, n. suppl 1, p. 300-313. DOI: 10.1080/14680629.2015.1029676. DOI: https://doi.org/10.1080/14680629.2015.1029676

Motta, L.M.G DA (1979) O Estudo da Temperatura em Revestimentos Betuminosos. Dissertação (mestrado). Programa de pós-graduação em Engenharia Civil, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ. Disponível em: < https://pantheon. ufrj.br/handle/11422/2966 > (acesso em 02/11/2023).

Nascimento, L.A.H. (2015) Implementation and Validation of the Viscoelastic Continuum Damage Theory for Asphalt Mix-ture and Pavement Analysis in Brazil. Tese (doutorado). North Carolina State University, Raleigh, North Carolina. Disponível em: < https:// repository.lib.ncsu.edu/bitstream/handle/1840.16/10651/etd.pdf?sequence=2> (acesso em 10/11/2023).

Ntramah, S.; K.A. Tutu; Y.A. Tuffour et al. (2023) Evaluation of selected empirical models for asphalt pavement temperature prediction in a tropical climate: the case of Ghana. Sustainability (Basel), v. 15, n. 22, p. 15846. DOI: 10.3390/su152215846. DOI: https://doi.org/10.3390/su152215846

Ongel, A. e J. Harvey (2004) Analysis of 30 Years of Pavement Temperatures Using the Enhanced Integrated Climate Model (EICM). Disponível em: <https://www.researchgate.net/publication/252682523> (acesso em: 2/12/2023).

Rajapaksha, M.C.; B. Athukorallage; S. Senadheera et al. (2023) Temporal and spatial temperature predictions for flexible pavement layers using numerical thermal analysis and verified with large datasets. Case Studies in Construction Materials, v. 18, p. e02008. DOI: 10.1016/j.cscm.2023.e02008. DOI: https://doi.org/10.1016/j.cscm.2023.e02008

Ramadhan, R.H. e H.I. Al-Abdul Wahhab (1997) Temperature variation of flexible and rigid pavements in Eastern Saudi Arabia. Building and Environment, v. 32, n. 4, p. 367-373. DOI: 10.1016/S0360-1323(96)00072-8. DOI: https://doi.org/10.1016/S0360-1323(96)00072-8

Rose, L.S. e R. Levinson (2013) Analysis of the effect of vegetation on albedo in residential areas: case studies in suburban Sacramento and Los Angeles, CA, GIScience & Remote Sensing, v. 50, n. 1, p. 64-77. DOI: 10.1080/15481603.2013.778557. DOI: https://doi.org/10.1080/15481603.2013.778557

Saliko, D.; A. Ahmed e S. Erlingsson (2023) Development and validation of a pavement temperature profile prediction model in a mechanistic-empirical design framework. Transportation Geotechnics, v. 40, p. 100976. DOI: 10.1016/j.trgeo.2023.100976. DOI: https://doi.org/10.1016/j.trgeo.2023.100976

Santiago, L.S.; S. Sannago; S.A.T. Silva et al. (2018) Determinação do dano em pavimentos asfálticos por meio da combinação do modelo S-VECD com análises elásticas. Transportes, v. 26, n. 2, p. 31-43. DOI: 10.14295/transportes.v26i2.1446. DOI: https://doi.org/10.14295/transportes.v26i2.1446

Santos, A.B.V.; J.B. Soares; L. Feitosa et al. (2020) Influência da temperatura e da velocidade de trafego na previsão de área trincada de pavimentos asfálticos. Transportes, v. 28, n. 4, p. 53-66. DOI: 10.14295/transportes.v28i4.2394. DOI: https://doi.org/10.14295/transportes.v28i4.2394

Schuster, S.L. (2018) Estudo do comportamento à fadiga de misturas asfálticas aplicadas em campo por meio da teoria viscoelástica de dano contínuo. Dissertação (mestrado). Programa de pós-graduação em Engenharia Civil, Universidade Federal de Santa Maria, Santa Maria, RS. Disponível em: < https://repositorio.ufsm.br/handle/1/16566 > (acesso em 15/11/2023).

Schuster, S.L.; C. Faccin; P.O.B. Almeida Jr. et al. (2022) Impacto das Mudanças Climáticas na Seleção de Ligantes Asfálticos no Brasil Considerando o Grau de Desempenho (PG). Rio de Janeiro: IBP. Rio Oil & Gas 2022: Sessões Técnicas Digitais e Presenciais, Technical Sessions (Video Presentations + Technical Papers in PDF). DOI: 10.48072/2525-7579.rog.2022.089. DOI: https://doi.org/10.48072/2525-7579.rog.2022.089

Shamsaei, M.; A. Carter e M. Vaillancourt (2022) A review on the heat transfer in asphalt pavements and urban heat island mitigation methods. Construction & Building Materials, v. 359, p. 129350. DOI: 10.1016/j.conbuildmat.2022.129350. DOI: https://doi.org/10.1016/j.conbuildmat.2022.129350

Siefert, C.A.C.; N. Dombrowski Netto; F.H.S. Marangon et al. (2021) Avaliação de séries de velocidade do vento de produtos de reanálises climáticas para o Brasil. Revista Brasileira de Meteorologia, v. 36, n. 4, p. 689-701. DOI: 10.1590/0102-7786360026. DOI: https://doi.org/10.1590/0102-7786360026

Sousa, J.B.; J. Craus e C.L. Monismith (1991) Summary Report on Permanent Deformation in Asphalt Concrete. Disponível em: < https://onlinepubs.trb.org/onlinepubs/shrp/SHRP-A-318.pdf> (acesso em: 2/12/2023).

Specht, L.P.; P.A.P. Borges e L. Hellmann (2008) Determinação das propriedades térmicas de concretos asfálticos com diferentes tipos de ligantes. Revista Tecnologia, v. 29, n. 2, p. 198-210.

Swarna, S.T. e K. Hossain (2022) Climate change impact and adaptation for highway asphalt pavements: a literature review. Canadian Journal of Civil Engineering, v. 49, n. 7, p. 1109-1120. DOI: 10.1139/cjce-2021-0209. DOI: https://doi.org/10.1139/cjce-2021-0209

Terrel, R.L.; T.V. Scholz; A. Al-Joaib et al. (1994) Report SHRP-A-402: Water Sensitivity: Binder Validation. Washington: Strategic Highway Research Program, National Research Council.

Wang, Z., Y. Xie; M. Mu et al. (2022). Materials to mitigate the urban heat island effect for cool pavement: a brief review. Buildings, v. 12, n. 8, p. 1221. DOI: 10.3390/buildings12081221. DOI: https://doi.org/10.3390/buildings12081221

Wood, J.H. (1998) Pavement Temperature Models: Design Requirements, Model Predictions and Analysis of Temperature Measurements. Wellington: Transfund New Zealand.

Yang, E.; J. Peng; L. Luo et al. (2023) Analysis on influencing factors of asphalt pavement icing and establishment of icing prediction model. Road Materials and Pavement Design, v. 24, n. 12, p. 2959-75. DOI: 10.1080/14680629.2023.2185466. DOI: https://doi.org/10.1080/14680629.2023.2185466

Yao, L.; Z. Leng; F. Ni et al. (2024) Adaptive maintenance strategies to mitigate climate change impacts on asphalt pavements. Transportation Research Part D, Transport and Environment, v. 126, p. 104026. DOI: 10.1016/j.trd.2023.104026. DOI: https://doi.org/10.1016/j.trd.2023.104026

Zhao, X.; A. Shen e B. Ma (2018) Temperature adaptability of asphalt pavement to high temperatures and significant temperature differences. Advances in Materials Science and Engineering, v. 2018, p. 9436321. DOI: 10.1155/2018/9436321. DOI: https://doi.org/10.1155/2018/9436321

Zheng, M.; Y. Tian e L. He (2019) Analysis on environmental thermal effect of functionally graded nanocomposite heat reflective coatings for asphalt pavement. Coatings, v. 9, n. 3, p. 178. DOI: 10.3390/coatings9030178. DOI: https://doi.org/10.3390/coatings9030178

Published

2024-07-04

How to Cite

Faccin, C., Pivoto Specht, L., Da Silva Pereira, D., Lisboa Schuster, S., Brondani, C., Gaube Guex, G., & Menezes Vestena, P. (2024). Development of a flexible pavement temperature profile prediction model. TRANSPORTES, 32(2), e2984. https://doi.org/10.58922/transportes.v32i2.2984

Issue

Section

Artigos