Advancements and applications of X-ray microcomputed tomography and digital image processing for the characterization of asphaltic materials

Authors

DOI:

https://doi.org/10.58922/transportes.v31i1.2854

Keywords:

X-ray micro-computed tomography, Digital image processing, Asphaltic materials, Artificial intelligence

Abstract

This paper presents recent advances of the application of the x-ray microtomography (micro-CT) technique in the characterization of asphaltic materials. Imaging characteristics to perform micro-CT tests of asphalt concrete and fine aggregate matrix mixtures are discussed. A procedure developed to perform the digital image processing of the asphaltic materials images is also presented. The key findings from this paper are: (1) spatial resolutions between 10 µm/pixel and 13 µm/pixel are adequate to perform the evaluation of asphaltic material volumetrics; (2) instead of thresholding, the U-Net architecture can be used to optimize the digital image processing; (3) a representative volume element comprising 33% of the sample volume can be adopted for volumetric evaluations of asphaltic materials; (4) fine aggregate matrix volumetric properties are dependent on the asphalt mixture volumetrics.

Downloads

Download data is not yet available.

References

Al-Raoush, R. e A. Papadopoulos (2010) Representative Elementary Volume Analysis of Porous Media using X-ray Computed Tomography. Powder technology, v. 200(1-2), p. 69-77. DOI: 10.1016/j.powtec.2010.02.011. DOI: https://doi.org/10.1016/j.powtec.2010.02.011

Amelian, S.; Y. R. Kim; P. H. Osmari; F. T. S. Aragão; D. Braz e R. F. Costa (2019) Development of a Volumetric Mix Design Approach for Fine Aggregate Matrix (FAM) and Validation with Micro-CT Method, Transportation Research Board 98th Annual Meeting. Washington, D. C., Estados Unidos.

Augusto, K. (2016) Microtomografia Computadorizada de Raios X Aplicada à Caracterização de Porosidade em Pelotas de Minério de Ferro. Tese de Doutorado. PUC-Rio. Rio de Janeiro.

Bezerra, E.; K. Augusto e S. Paciornik (2020) Discrimination of Pores and Cracks in Iron Ore Pellets using Deep Learning Neural Networks. REM - International Engineering Journal, v. 73, n. 2, p. 197-203. DOI: 10.1590/0370-44672019730119. DOI: https://doi.org/10.1590/0370-44672019730119

Buades, A.; B. Coll e J-M. Morel (2011) Non-Local Means Denoising. Image Processing On Line Journal, v. 1, pp. 208-212. DOI: 10.5201/ipol.2011.bcm_nlm. DOI: https://doi.org/10.5201/ipol.2011.bcm_nlm

Chen, A.; G. D. Airey; N. Thom e Y. Li (2022) Characterisation of Fatigue Damage in Asphalt Mixtures using X-ray Computed Tomography. Road Materials and Pavement Design, p. 1-19. DOI: 10.1080/14680629.2022.2029756. DOI: https://doi.org/10.1080/14680629.2022.2029756

CTAnalyzer v. 1.20.3. (2020) [Computer software]. Bruker, Kontich, Belgium. Disponível em <https://www.bruker.com/en/products-and-solutions/preclinical-imaging/micro-ct/3d-suite-software.html > (acesso em 01/09/2022).

Dragonfly 2020.1. (2020) [Computer software] Object Research Systems (ORS) Inc, Montreal, Canadá. Disponível em <http://www.theobjects.com/dragonfly> (acesso em 01/09/2022).

Enríquez-León, A. J.; T. D. Souza, F. T. S. Aragão; D. Braz; A. M. B. Pereira e L. P. Nogueira (2021a) Determination of the Air Void Content of Asphalt Concrete Mixtures using Artificial Intelligence Techniques to Segment Micro-CT Images. International Journal of Pavement Engineering, p. 1-10. DOI: 10.1080/10298436.2021.1931197. DOI: https://doi.org/10.1080/10298436.2021.1931197

Enríquez-León, A. J.; T. D. Souza; F. T. S. Aragão; A. M. B. Pereira e L. P. Nogueira (2021b) Characterization of the Air Void Content of Fine Aggregate Matrices within Asphalt Concrete Mixtures. Construction and Building Materials, v. 300, 124214, p. 1-12. DOI: 10.1016/j.conbuildmat.2021.124214. DOI: https://doi.org/10.1016/j.conbuildmat.2021.124214

Gomes, O. D. M. (2007) Microscopia Co-Localizada: Novas Possibilidades na Caracterização de Minérios. Tese de Doutorado. PUC-Rio, Rio de Janeiro.

Gonzales, R. C. e R. E. Woods (2010) Processamento Digital de Imagens, 3ª ed. Pearson Prentice Hall, São Paulo.

Jiang, J.; Z. Zhang; Q. Dong e F. Ni (2018) Characterization and Identification of Asphalt Mixtures Based on Convolutional Neural Network Methods using X-ray Scanning Images. Construction and Building Materials, v. 174, p. 72–80. DOI: 10.1016/j.conbuildmat.2018.04.083. DOI: https://doi.org/10.1016/j.conbuildmat.2018.04.083

Masad, E.; B. Muhunthan; N. Shashidhar e T. Harman (1999) Quantifying Laboratory Compaction Effects on the Internal Structure of Asphalt Concrete. Transportation Research Record: Journal of the Transportation Research Board, v. 1681, pp. 179-185. DOI: 10.3141/1681-21. DOI: https://doi.org/10.3141/1681-21

Masad, E.; V. K. Jandhyala; N. Dasgupta; N. Somadevan e N. Shashidhar (2002) Characterization of Air Void Distribution in Asphalt Mixes using X-ray Computed Tomography. Journal of Materials in Civil Engineering, v. 14(2), p. 122-129. DOI: 10.1061/(asce)0899-1561(2002)14:2(122). DOI: https://doi.org/10.1061/(ASCE)0899-1561(2002)14:2(122)

Nascimento, L.; L. Leite; E. F. Campos; G. Marques e L. Motta (2006) Uso da Tomografia Computadorizada e de Imagens Digitais para o Estudo de Misturas Asfálticas. Anais do Encontro do Asfalto IBP - 18, Rio de Janeiro.

Neto, J.; A. Fiori, A. Lopes; C. Marchese; C. Coelho; E. Vasconcellos; G. Silva e R. Secchi (2011) A Microtomografia Computadorizada de Raios X Integrada à Petrografia no Estudo Tridimensional de Porosidade em Rochas. Revista Brasileira de Geociências. v. 41(3). p. 498-508, 2011. DOI: 10.25249/0375-7536.2011413498508. DOI: https://doi.org/10.25249/0375-7536.2011413498508

Osmari, P. H.; R. F. Costa; F. T. S. Aragão; D. Braz, R. C. R. Barroso; L. P. Nogueira e A. K. Y. Ng (2020) Determination of Volumetric Characteristics of FAM Mixtures using X-Ray Micro-Computed Tomography and Their Effects on the Rheological Behavior of the Material. Transportation Research Record: Journal of the Transportation Research Board, v. 2674(5), p. 97-107. DOI: 10.1177/0361198120914607. DOI: https://doi.org/10.1177/0361198120914607

Palombo, L. (2017) A Microtomografia de Raios X e a Porosimetria por Intrusão de Mercúrio na Determinação de Porosidade e Densidade de Rochas Reservatório. Dissertação de Mestrado, Universidade de São Paulo, São Paulo.

Provencher, B.; N. Piché e M. Marsh (2019) Simplifying and Streamlining Large-Scale Materials Image Processing with Wizard-Driven and Scalable Deep Learning. Microscopy and Microanalysis, v. 25, S2, p. 402-403. DOI: 10.1017/s1431927619002745. DOI: https://doi.org/10.1017/S1431927619002745

Sadeq, M.; E. A. Masad; H. Al-Khalid e O. Sirin (2018) Characterisation of Air Voids in W-FAM Samples using X-Ray CT Imaging. Advances in Materials and Pavement Performance Prediction: CRC Press, p. 97-100. DOI: 10.1201/9780429457791-25. DOI: https://doi.org/10.1201/9780429457791-25

Schindelin, J.; I. Arganda-Carreras; E. Frise; V. Kaynig; M. Longair; T. Pietzsch; S. Preibisch; C. Rueden; S. Saalfeld; B. Schmid; J-Y. Tinevez; D. J. White; V. Hartenstein; K. Eliceiri; P. Tomancak e A. Cardona (2012) Fiji: an Open-source Platform for Biological-Image Analysis. Nature Methods, v. 9(7), p. 676-682. DOI: 10.1038/nmeth.2019. DOI: https://doi.org/10.1038/nmeth.2019

Souza, T. D.; A. J. Enríquez-León; C. R. R. Souza; F. T. S. Aragão; C. Logelo; I. C. Lima, M. C. Santo e P. Couto (2022) Avaliação das Características Volumétricas de Matrizes de Agregados Finos Usando Microtomografia e Segmentação por Deep Learning. XXXVI ANPET, Fortaleza.

Souza, T. D.; A. J. Enríquez-León; M. L. Rocha; P. H. Osmari; F. T. S. Aragão; A. M. B. Pereira e B. S. Underwood (2023) A Criterion to Select the Maximum Aggregate Size of Fine-Aggregate Asphalt Matrices. 102nd Annual Meeting of the Transportation Research Board (TRB). Washington, D. C., Estados Unidos. No prelo.

Shaheen, M.; A. Al-Mayah e S. Tighe (2016) A Novel Method for Evaluating Hot Mix Asphalt Fatigue Damage: X-ray Computed Tomography. Construction and Building Materials, v. 113, p. 121-133. DOI: 10.1016/j.conbuildmat.2016.03.030. DOI: https://doi.org/10.1016/j.conbuildmat.2016.03.030

Tashman, L.; E. Masad; J. D'Angelo; J. Bukowski e T. Harman (2002) X-ray Tomography to Characterize Air Void Distribution in Superpave Gyratory Compacted Specimens. International Journal of Pavement Engineering, v. 3, n. 1, p. 19-28. DOI: 10.1080/10298430290029902a. DOI: https://doi.org/10.1080/10298430290029902a

Thyagarajan, S.; L. Tashman; E. Masad e F. Bayomy (2010) The Heterogeneity and Mechanical Response of Hot Mix Asphalt Laboratory Specimens. International Journal of Pavement Engineering, v. 11(2), p. 107-121. DOI: 10.1080/10298430902730521. DOI: https://doi.org/10.1080/10298430902730521

Underwood, B. S. (2011) Multiscale Constitutive Modeling of Asphalt Concrete. Tese de Doutorado. North Carolina State University, Carolina do Norte.

Landis, E e D. Keane (2010) X-ray microtomography. Materials Characterization, v. 61, n. 12, p. 1305-1316, DOI: 10.1016/j.matchar.2010.09.012. DOI: https://doi.org/10.1016/j.matchar.2010.09.012

Yang, H.; J. Huyan; T. Ma; Z. Tong; C. Han e T. Xie (2022) Novel Computer Tomography Image Enhancement Deep Neural Networks for Asphalt Mixtures. Construction and Building Materials, v. 352, 129067, p. 1-13. DOI: 10.1016/j.conbuildmat.2022.129067. DOI: https://doi.org/10.1016/j.conbuildmat.2022.129067

You, Z.; S. Adhikari e M. Emin Kutay (2008) Dynamic Modulus Simulation of the Asphalt Concrete using the X-ray Computed Tomography Images. Materials and Structures, v. 42, n. 5, p. 617-630, DOI: 10.1617/s11527-008-9408-4. DOI: https://doi.org/10.1617/s11527-008-9408-4

Zelelew, H. M.; A. Almuntashri; S. Agaian e A. T. Papagiannakis (2013) An Improved Image Processing Technique for Asphalt Concrete X-ray CT Images. Road Materials and Pavement Design, v. 14, n. 2, p. 341-359, DOI: 10.1080/14680629.2013.794370. DOI: https://doi.org/10.1080/14680629.2013.794370

Zhao, Z.; J. Jiang; F. Ni e X. Ma (2021) 3D-Reconstruction and Characterization of the Pore Microstructure within the Asphalt FAM using the X-ray Micro-computed Tomography. Construction and Building Materials, v. 272, 121764, p. 1-9. DOI: 10.1016/j.conbuildmat.2020.121764. DOI: https://doi.org/10.1016/j.conbuildmat.2020.121764

Downloads

Published

2023-05-03

How to Cite

Souza, T. D. de, Enríquez-León, A. J., Aragão, F. T. S., Pereira, A. M. B., & Nogueira, L. P. (2023). Advancements and applications of X-ray microcomputed tomography and digital image processing for the characterization of asphaltic materials. TRANSPORTES, 31(1), e2854. https://doi.org/10.58922/transportes.v31i1.2854

Issue

Section

Artigos Vencedores do Prêmio ANPET Produção Científica