Truck load on Brazilian federal toll highways

Authors

DOI:

https://doi.org/10.58922/transportes.v31i1.2849

Keywords:

Vehicle Weighing, Truck Overload, Pavement Design

Abstract

Even though vehicle weighing stations collect data almost 24/7 in Brazil, the amount of information available on the actual load levels of the country's truck fleet is limited. When carrying out adequate weighing campaigns for pavement design or analysis is unmanageable, considerations are made regarding the loading of the fleet, which does not always adequately portray the actual truck weights. Thus, this research analyzed weighing data from more than 30 million vehicles between 2015 and 2020 over nine Brazilian sites, located along federal toll highways in the South and Southeast regions, to investigate and portray truck load levels observed in the country’s fleet, as well as any particularities intrinsic to Brazilian cargo transport, to establish metrics to guide highway projects in the country. Therefore, data science tools were used to propose a load level model inline to the Brazilian state of the practice. The proposed model yielded satisfactory results when compared to the actual observed values, with determination coefficients between 0.95 and 0.99, and reveals itself as a viable alternative to the arbitrary load distributions commonly utilized in the country.

Downloads

Download data is not yet available.

References

Albano, J. F. (2005). Efeitos dos excessos de carga sobre a durabilidade de pavimentos [Tese de Doutorado]. Universidade Federal do Rio Grande do Sul.

Albano, J. F. e L. A. Lindau. (2006). Revisando as tecnologias para pesagem de veículos. Revista Estradas, 10, 102–108.

American Association of State Highway and Transportation Officials. (1993). AASHTO Guide for Design of Pavement Structures. AASHTO.

American Association of State Highway and Transportation Officials. (2015). Mechanistic-Empirical Pavement Design Guide: A Manual of Practice. Em American Association of State Highway and Transportation Officials, Washington, DC. (2nd ed). AASHTO.

Balbo, J. T. (2007). Pavimentação Asfáltica: materiais, projeto e restauração. Oficina de Textos.

Brasil. (2006). Manual de estudos de tráfego. IPR/DNIT.

Brasil. (2022). Novos Projetos em Rodovias. Agência Nacional de Transportes Terrestres. https://portal.antt.gov.br/novos-projetos-em-rodovias

Breunig, M. M.; H.-P. Kriegel; R. T. Ng e J. Sander. (2000). LOF: identifying density-based local outliers. ACM SIGMOD Record, 29(2), 93–104. https://doi.org/10.1145/335191.335388 DOI: https://doi.org/10.1145/335191.335388

Brito, L. A. T.; J. A. P. Ceratti; W. P. Núñez e A. Bock. (2013). Implantação de um sistema de pesagem em movimento em alta velocidade na rodovia BR-290/RS, Free Way, para estudo de espectro de cargas comerciais rodantes. Revista Estradas, 18, 22–28.

Brown, D. N. e R. G. Ahlvin. (1961). Revised Method of Thickness Design for Flexible Highway Pavements at Military Installations. U.S. Army Corps of Engineers.

Fontenele, H. B. (2011). Representação do Tráfego de Veículos Rodoviários de Carga através de Espectros de Carga por Eixo e seu Efeito no Desempenho dos Pavimentos [Tese de Doutorado]. Universidade de São Paulo.

Haider, S. W.; G. Musunuru; N. Buch; O. Selezneva e J. P. Schenkel. (2019). Updating Traffic Inputs for Use in the Pavement Mechanistic-Empirical Design in Michigan. Transportation Research Record, 2673(11), 13–28. https://doi.org/10.1177/0361198119849913 DOI: https://doi.org/10.1177/0361198119849913

Hasan, M. A.; M. R. Islam e R. A. Tarefder. (2016). Clustering vehicle class distribution and axle load spectra for mechanistic-empirical predicting pavement performance. Journal of Transportation Engineering, 142(11), 1–11. https://doi.org/10.1061/(ASCE)TE.1943-5436.0000876 DOI: https://doi.org/10.1061/(ASCE)TE.1943-5436.0000876

Macea, L. F.; L. Márquez e H. Llinás. (2015). Improvement of axle load spectra characterization by a mixture of three distributions. Journal of Transportation Engineering, 141(12), 1–9. https://doi.org/10.1061/(ASCE)TE.1943-5436.0000801 DOI: https://doi.org/10.1061/(ASCE)TE.1943-5436.0000801

Medina, J. de e L. M. G. da Motta. (2005). Mecânica dos Pavimentos (2o ed). COPPE/UFRJ.

Peterlini, P. S. (2006). Cargas por eixo e fatores de veículos obtidos em rodovias federais concessionadas do estado do Paraná [Dissertação de Mestrado]. Universidade Federal de Santa Catarina.

Rys, D. (2021). Consideration of dynamic loads in the determination of axle load spectra for pavement design. Road Materials and Pavement Design, 22(6), 1309–1328. https://doi.org/10.1080/14680629.2019.1687006 DOI: https://doi.org/10.1080/14680629.2019.1687006

São Paulo (Estado). (2006). Instrução de Projeto IP-DE-P00/001. Projeto de Pavimentação. Departamento de Estradas de Rodagem.

São Paulo (Município). (2004). IP – 02/2004 CLASSIFICAÇÃO DAS VIAS. Prefeitura de São Paulo.

Souza, M. L. de. (1981). Método de projeto de pavimentos flexíveis (3. ed.). IPR.

Tahaei, N.; J. J. Yang; M. G. Chorzepa; S. S. Kim e S. A. Durham. (2021). Machine learning of Truck Traffic Classification groups from Weigh-in-Motion data. Machine Learning with Applications, 6, 100178. https://doi.org/10.1016/j.mlwa.2021.100178 DOI: https://doi.org/10.1016/j.mlwa.2021.100178

Vallejo, F. M. L. (2021). Impactos do excesso de carga nos pavimentos rodoviários: uma abordagem probabilística na determinação do fator de veículo [Tese de Doutorado]. Universidade de São Paulo.

Published

2023-05-03

How to Cite

Falck Grimm, H., & Antônio Teixeira Brito, L. (2023). Truck load on Brazilian federal toll highways. TRANSPORTES, 31(1), e2849. https://doi.org/10.58922/transportes.v31i1.2849

Issue

Section

Artigos Vencedores do Prêmio ANPET Produção Científica