Estimating the resilient modulus of subgrade materials using visual inspection
DOI:
https://doi.org/10.14295/transportes.v30i3.2738Keywords:
Artificial neural networks, Visual-manual classification, Mechanistic-empirical design of pavement, Low volume roadsAbstract
The definition of the Resilient Modulus (MR) of subgrade soils is essential for the reliable implementation of mechanistic-empirical pavement design. The MR of the soil is measured through repeated triaxial load tests which require expensive equipment and complex analyses. This reinforces the need to develop accurate statistical models for the prediction of the MR of the subgrade soil to be used for paving highways, especially in developing countries, such as Brazil, where financial resources are limited. The present study used artificial neural networks (ANNs) to create a model for the prediction of the MR of subgrade soils based on a visual-manual classification. For this, the results of MR tests conducted on samples of different soils from northeastern Brazil were used to develop an ANNs model for the prediction of the MR. The results demonstrate that ANNs can predict reliably the MR of soils, with a good degree of correlation in comparison with the laboratory test data. These findings support the use of the ANN model as a cost-effective approach for the preliminary evaluation of subgrade soils for highway pavement design in northeastern Brazil.
Downloads
References
Alawi, M. and M. Rajab (2013) Prediction of California bearing ratio of sub base layer using multiple linear regression models. Road Materials and Pavement Design, v. 14, n. 1, p. 211-2019. DOI: 10.1080/14680629.2012.757557.
Amiri, H.; S. Nazarian and and E. Fernando (2009) Investigation of impact of moisture variation on response of pavements through small-scale models. Journal of Materials in Civil Engineering, v.21 n. 10, p. 553–560. DOI: 10.1061/(ASCE)0899-1561(2009)21:10(553).
Archilla, A. R.; P. S. Ooi and K. G. Sandefur (2007) Estimation of a resilient modulus model for cohesive soils using joint estimation and mixed effects. Journal of Geotechnical and Geoenvironmental Engineering, v.133, n.8, p. 984–994. DOI: 10.1061/(ASCE)1090-0241(2007)133:8(984).
ABNT (1984) NBR 7181: Solo –Análise Granulométrica. Rio de Janeiro: Associação Brasileira de Normas Técnicas.
ABNT (2016) NBR 7182: Solo – Ensaio de compactação. Rio de Janeiro: Associação Brasileira de Normas Técnicas.
ABNT (2016) NBR 7180: Solo –Determinação do limite de plasticidade. Rio de Janeiro: Associação Brasileira de Normas Técnicas.
ABNT (2016) NBR 6459: Solo – Determinação do Limite de Liquidez. Rio de Janeiro.: Associação Brasileira de Normas Técnicas. Rio de Janeiro.
ABNT (2016) NBR 9895: Solo - Índice de suporte Califórnia (ISC) - Método de ensaio. Rio de Janeiro.: Associação Brasileira de Normas Técnicas.
ASTM D2488-00 (2000) Standard Practice for Description and Identification of Soils (Visual-Manual Procedure). West Conshohocken, PA.: American Society for Testing and Materials.
Bastos, J.B.S. (2013) Influência da variação da umidade no comportamento de pavimentos da região metropolitana de Fortaleza. Dissertação (mestrado). Programa de Pós-graduação em Engenharia de Transportes, Universidade Federal do Ceará. Fortaleza, Brazil. Disponível em :<https://repositorio.ufc.br/handle/riufc/5627 > (Acesso em 23/05/2022).
Bayrak, M.B.; G. Alperand C. Halil (2005) Rapid pavement back calculation technique for evaluating flexible pavement systems. In Proceedings of the August 2005 Mid-Continent Transportation Research Symposium, Ames: IA. p.1-14.
Beale, M.H.; M. T. Haganand H. B. Demuth (2010) Neural Network Toolbox 7 - User’s Guide.
Benevides, S.A.S (2000) Análise comparativa dos métodos de dimensionamento dos pavimentos asfálticos: Empírico do DNER e da Resiliência da COPPE/UFRJ em rodovias do estado do Ceará. Dissertação (mestrado). Programa de Pós-graduação em Engenharia de Transportes, Universidade Federal do Rio de Janeiro. Rio de Janeiro, Brazil.
Bounds, D.G., et al., 1988. A multilayer perceptron network for the diagnosis of low back pain. In Proc. of, 2nd IEEE annual int’l conference on Neural Networks, San Diego, NJ, USA, p. 481–489.
Bredenhann, S.J. and M. F. V. van de Ven (2004) Application of artificial neural networks in the back-calculation of flexible pavement layer moduli from deflection measurements. In Proceedings 8th Conference on Asphalt Pavements for Southern Africa (CAPSA ’04), Sun City, South Africa, p. 1-18.
Chaves, F. J. (2000) Caracterização geotécnica de solos da formação barreiras da região metropolitana de fortaleza para aplicação em obras rodoviárias. Dissertação (Mestrado). Programa de Pós-graduação em Engenharia de Transportes, Universidade Federal do Rio de Janeiro. Rio de Janeiro.
Cybenko, G. (1989) Approximation by superposition of a sigmoidal function. Mathematica. Control Signal Systems, v. 2, n. 4, p. 303-314.
Dantas Neto, S. A.; M. V. Silveira.; L. B. Amâncioand G. J. M. Anjos (2014) Pile settlement modeling with multilayer perceptrons. Electronic Journal of Geotechnical Engineering, v. 19, p. 4517-4518.
DNIT (2018) Norma DNIT 134/2018-ME: Pavimentação – Solos – Determinação do módulo de resiliência – Método de ensaio. Rio de Janeiro: Departamento Nacional de Infraestrutura de Transportes.
Erzin, Y.; B.H. Rao and D. N. Singh (2008) Artificial neural networks for predicting soil thermal resistivity. International Journal of Thermal Sciences, v.47, n.10, p.1347–1358. DOI:10.1016/j.ijthermalsci.2007.11.001.
Erzin, Y. and D. Turkoz (2016) Use of neural networks for the prediction of the CBR value of some aegean sands. Neural Computing and Applications, v. 27, n. 5, p. 1415–1426. DOI: 10.1007/s00521-015-1943-7.
George, K. (2004). Prediction of Resilient Modulus from Soil Index Properties. (Masters) thesis, Graduate Program in Transportation Engineering, University Of Mississippi, Mississipi. Available at: <https://trid.trb.org/view/753659> (Accessed 25 May 2022).
Gong, H.; S. Yiren.; B. Huang and Z. Mei (2018) Improving accuracy of rutting prediction for mechanistic-empirical pavement design guide with deep neural networks. Construction and Building Materials, v.190, n.30, p. 710–718. DOI: 10.1016/j.conbuildmat.2018.09.087.
Gunaydin, O.; A. Gokoglu, and M. Fener (2010) Prediction of artificial soil’s unconfined compression strength test using statistical analyses and artificial neural networks. Advances in Engineering Software, v. 41, n.9, p. 1115–1123.
Hanittinan, W (2007) Resilient Modulus Prediction Using Neural Network Algorithm. (Doctoral) dissertation.Graduate Program in Civil Engineering, Ohio State University. Ohio. Available at: <http://rave.ohiolink.edu/etdc/view?acc_num=osu1190140082> (Accessed 27 May 2022).
Haykin, S.O. (2007) Neural Networks, A Comprehensive Foundation (2ª ed.). Ontario: Pearson Education.
Hecht-Nelsen, R. (1990) Neurocomputing. Massachusetts, United States: Addison-Wesley Publishing Company, Reading.
Hecht-Nelson, R. (1989). Neurocomputing. Boston, United States: Addison- Wesley Longman Publishing Co. Inc.
Johari, A.; A. A. Javadiand G. Habibagahi (2011) Modelling the mechanical behavior of unsaturated soils using a genetic algorithm-based neural network. Computers and Geotechnics, v. 38, n. 1, p. 2-13. DOI: 10.1016/j.compgeo.2010.08.011.
Kayadelen, C.; O. Gunaydin.; M. Fener.; A. Demir and A. Ozvan (2009) Modeling of the angle of shearing Resistance of soils using soft computing systems. Expert Systems With Applications, v. 36, n. 9, p. 11814-11826.DOI: 10.1016/j.eswa.2009.04.008.
Kim, D.G. (2004) Development of a Constitutive Model for Resilient Modulus of Cohesive Soils, (Doctoral) dissertation. Graduate Program in Civil Engineering, Ohio State University. Ohio. Available at: <https://etd.ohiolink.edu/apexprod/rws_etd/send_file/send?accession=osu1078246971&disposition=inline> (Accessed 27 May 2022).
Kim, S.H.;J. Yangandand J. H. Jeong (2014) Prediction of Subgrade Resilient Modulus Using Artificial Neural Network.KSCE Journal of Civil Engineering, v.18, n.1, p.1372–1379. DOI: 10.1007/s12205-014-0316-6.
Li, M. and H. Wang (2019) Development of ANN-GA program for back calculation of pavement moduli under FWD testing with viscoelastic and nonlinear parameters. International Journal of Pavement Engineering, v.20, n.4, p. 490-498. DOI: 10.1080/10298436.2017.1309197.
Maia, C.L. (2016) Análise comparativa de módulos de resiliência obtidos com o Geogauge para o controle de qualidade de camadas granulares dos pavimentos. Dissertação (mestrado). Programa de Pós-graduação em Engenharia de Transportes, Universidade Federal do Ceará. Fortaleza. Disponı́vel em: <https://repositorio.ufc.br/handle/riufc/22640> (Acesso em: 23/05/2022).
Malla, R. and S. Joshi (2007) Resilient modulus prediction models based on analysis of LTPP data for subgrade soils and experimental verification. Journal of Transportation Engineering, 133 (9), 491–504. DOI: 10.1061/(ASCE)0733-947X(2007)133:9(491).
Minke, G. (2006) Building with earth: design and technology of a sustainable architecture (2ª ed.). Basel: Birkhaeuser.
Nazzal, M. D. and O. Tatari (2013) Evaluating the use of neural networks and genetic algorithms for prediction of subgrade resilient modulus. International Journal of Pavement Engineering, v. 14, n. 4, p. 364–373. DOI: 10.1080/10298436.2012.671944.
Pal, M. and S. Deswal (2014) Extreme learning machine based modeling of resilient modulus of subgrade soils. Geotechnical and Geological Engineering, v.32, p. 287–296.
Park, H. I.; G. C. Kweon and S. R. Lee (2009) Prediction of resilient modulus of granular subgrade soils and subbase materials using artificial neural network. Road Materials and Pavement Design, v. 10, n. 3, p. 647- 665. DOI:10.1080/14680629.2009.9690218.
Park, H.M.; M. K. Chung.; Y. A. Lee and E. B. Kim (2013) A study on the correlation between soil properties and subgrade stiffness using the long-term pavement performance data. International Journal of Pavement Engineering, v.14, n. 2, p.146-153.
Patel, R.S. and M. D. Desai (2010) CBR predicted by index properties for alluvial soils of South Gujarat. In Indian Geotechnical Conference, GEOtrendz. IGS Mumbai Chapter & IIT Bombay, 4.
Pezo R. F (1993) A general method of reporting resilient modulus tests of soils: a pavement engineer’s point of view. In Proceedings of the 72nd annual meeting of the transportation research board. Washington, DC.
Pinheiro, S.T. (2018) Cartografia geotécnica para a cidade de Palmas-TO: descrição táctil visual do solo da região sudeste, entre as avenidas lo-03 e lo-27. Monografia (iniciação científica), Universidade Federal do Tocantins.
Pinto, C.S. (2006) Curso básico de mecânica dos solos em 16 aulas (3ª ed.). São Paulo: Oficina textos.
Rahin, A.M. and K. P. George (2005) Models to estimate subgrade resilient modulus for pavement design. The International Journal of Pavement Engineering, v. 6, n. 2, p. 89–96. DOI: 10.1080/10298430500131973.
Rakesh, N.; A. K. Jaind.; M. Amaranatha Reddy and K. Sudhakar Reddy (2006) Artificial neural networks-genetic algorithm based model for back calculation of pavement layer moduli. International Journal of Pavement Engineering, v.7, n.3, p. 221–230. DOI: 10.1080/10298430500495113.
Ribeiro, A. J. A.; C. A. U. Da Silva and S. H. A. Barroso (2015) Neural Estimation of Localization and Classification of Soils for Use in Low-Traffic- Volume Roads. Transportation Research Record, v. 2473 n. 2473, p. 98-106, 2015. DOI: 10.3141/2473-12.
Ribeiro, A.J.A. (2016). Um Modelo de Previsão do Módulo de Resiliência dos Solos no Estado do Ceará para Fins de Pavimentação. Tese (Doutorado). Programa de Pós-graduação em Engenharia de Transportes, Universidade Federal do Ceará. Fortaleza. Disponı́vel em: <https://repositorio.ufc.br/handle/riufc/18958 > (Acesso em: 23/05/2022).
Ribeiro, A. J. A.; C. A. U. Da Silva and S. H. A. Barroso (2018) Metodologia de baixo custo para mapeamento geotécnico aplicado à pavimentação. Transportes (Rio de Janeiro), v. 26, n. 2, p. 84-100. DOI: 10.14295/transportes.v26i2.1491.
Rigassi, V. (1985) Compressed earth blocks: manual of production (Vol I). Eschborn: Vieweg.
Sabat, A.K. (2013) Prediction of California bearing ratio of a soil stabilized with lime and quarry dust using artificial neural network. Electronic Journal of Geotechnical Engineering, v.18, p. 3261–3272.
Sadrossadat, E.; H. Ali and B. Ghorbani (2018) Towards application of linear genetic programming for Indirect estimation of the resilient modulus of pavements subgrade soils. Road Materials and Pavement Design, v. 19, n. 1, p. 139-153. DOI: 10.1080/14680629.2016.1250665.
Sadrossadat, E.; H. Ali and O. Saeedeh (2016) Prediction of the resilient modulus of flexible pavement Subgrade soils using adaptive neuro-fuzzy inference systems. Construction and Building Materials, v. 123, p. 235-247. DOI: 10.1016/j.conbuildmat.2016.07.008.
Singh, D.; M. Zaman and S. Commuri (2012) Artificial neural network modeling for dynamic modulus of hot mix asphalt using aggregate shape properties. Journal of Materials in Civil Engineering, v.25, n.1, p. 54–62. DOI: 10.1061/(ASCE)MT.1943-5533.0000548.
Sitton, J. D.; Y. Zeinali and B.A. Story (2017) Rapid soil classification using artificial neural networks for use in constructing compressed earth blocks. Construction and Building Materials, v. 138, p. 214-221. DOI: 10.1016/j.conbuildmat.2017.02.006.
Souza Junior, J.D (2005) O Efeito da energia de compactação em propriedades dos solos utilizados na pavimentação do Estado do Ceará. Dissertação (mestrado). Programa de Pós-graduação em Engenharia de Transportes, Universidade Federal do Ceará. Fortaleza. Disponı́vel em: <https://repositorio.ufc.br/handle/riufc/4860> (Acesso em: 23/05/2022).
Souza, W.M.; A. J. A. Ribeiro and C. A. U. Da Silva (2020) Use of ANN and visual-manual classification for prediction of soil properties for paving purposes. International Journal of Pavement Engineering, v. 23, n. 5. DOI: 10.1080/10298436.2020.1807546.
Tenpe, A. R. and A. Patel (2018) Application of genetic expression programming and artificial neural network for prediction of CBR. Road materials and pavement design, v. 19, n. 1, p. 1-18. DOI: 10.1080/14680629.2018.1544924.
Tseng, K.H. and R. L. Lytton (1989) Prediction of permanent deformation in flexible pavement materials. American Society for Testing and Materials. p. 154–172. DOI: 10.1520/STP24562S.
Turk, G.; J. Logar and B. Majes (2001) Modeling soil behavior in uniaxial strain conditions by neural networks, Advances in Engineering Software, v.32 n.10-11, p. 805-812. DOI: 10.1016/S0965-9978(01)00032-1.
Yau, A and H. Von Quintus (2002) Study of LTPP laboratory resilient modulus test data and response characteristics. Report no. FHWA-RD-02-051. Washington, DC: FHWA, US Department of Transportation.
Zeghal, M. and W. Khogali (2005) Predicting the resilient modulus of unbound granular materials by neural networks. In Proceedings Seventh International Conference on the Bearing Capacity of Roads, Railways and Airfields (7th BCRRA).Trondheim, Norway, p. 1-9.
Zhang, H. and T. Yu (2016) Prediction of subgrade elastic moduli in different seasons based on BP neural network technology. Road Materials and Pavement Design, v. 19, n. 8, p. 1-18. DOI: 10.1080/14680629.2016.1259122.
Zumrawi, M (2012) Prediction of CBR from index properties of cohesive soils. In Annual Conference of Postgraduate Studies and Scientific Research (Basic and Engineering Studies Board). Friendship Hall, Khartoum, p.1-9.
Zurada J.M. (1992) Introduction to Artificial Neural Systems. (1ª ed). New York: West Publishing Company.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Wana Maria de Souza , Antonio Júnior Alves Ribeiro, Suelly Helena de Araújo Barroso
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who submit papers for publication by TRANSPORTES agree to the following terms:
- Authors retain copyright and grant TRANSPORTES the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors may enter into separate, additional contractual arrangements for the non-exclusive distribution of this journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in TRANSPORTES.
- Authors are allowed and encouraged to post their work online (e.g., in institutional repositories or on their website) after publication of the article. Authors are encouraged to use links to TRANSPORTES (e.g., DOIs or direct links) when posting the article online, as TRANSPORTES is freely available to all readers.
- Authors have secured all necessary clearances and written permissions to published the work and grant copyright under the terms of this agreement. Furthermore, the authors assume full responsibility for any copyright infringements related to the article, exonerating ANPET and TRANSPORTES of any responsibility regarding copyright infringement.
- Authors assume full responsibility for the contents of the article submitted for review, including all necessary clearances for divulgation of data and results, exonerating ANPET and TRANSPORTES of any responsibility regarding to this aspect.