Application of a parameter based on linear-elastic fracture mechanics to predict the fatigue resistance of asphalt binders

Authors

DOI:

https://doi.org/10.14295/transportes.v28i5.2090

Keywords:

LAS test, Fracture mechanics, Continuum mechanics, Fatigue resistance, Modified binders

Abstract

Fatigue tests and parameters for asphalt binders have been developed as alternatives to the parameter G*.sind, but they also present limitations. Recent studies indicated that the fatigue damage tolerance index (af) of the Linear Amplitude Sweep (LAS) test was inefficient to characterize some modified asphalts. An approach based on the Linear Elastic Fracture Mechanics (LEFM) showed to be effective to analyze the data of the LAS test, also for the cases in which was not possible to determine the af index. In this work, the parameter of fatigue tolerance based on LEFM (aLEFM) was evaluated concerning its applicability and representation of the fatigue behavior. The indices aLEFM, af and BFF (binder fatigue factor) were compared in terms of their applicability to tests carried out with six asphalt binders (two neat and four modified ones) at three temperatures. It was possible to obtain the aLEFM index for a higher number of cases than the af index, which would indicate a higher applicability of the index based on the LEFM when compared with the af index. The BFF presented the highest applicability among the three indices. The aLEFM presented good correlation with af  and BFF, however aLEFMand af did not present significant correlation with the parameter Np20 obtained from the Time Sweep (TS) test. Among the indices aLEFM, af and BFF, BFF presented the highest correlation with Np20.

Downloads

Download data is not yet available.

Author Biographies

Daniela Corassa Garcia, Universidade de São Paulo, São Paulo – Brasil

Mestranda do Programa de Pós-graduação em Engenharia de Transportes da Escola de Engenharia de São Carlos

Área: Infraestrutura de Transportes

Adalberto Leandro Faxina, Universidade de São Paulo, São Paulo – Brasil

Docente do Departamento de Engenharia de Transportes da Escola de Engenharia de São Carlos

Área: Infraestrutura de Transportes

Edson Denner Leonel, Universidade de São Paulo, São Paulo – Brasil

Docente do Departamento de Engenharia de Estruturas da Escola de Engenharia de São Carlos

References

AASHTO (2014) Standard method of test for estimating damage tolerance of asphalt binders using the Linear Amplitude Sweep, AASHTO TP 101-14, Washington, DC.

Anderson, D. A. e T. W. Kennedy (1993) Development of SHRP binder specification (with discussion). Association of Asphalt Paving Technologists, v. 62, p. 481–507.

Anderson, D. A.; D. W. Christensen; H. U. Bahia; R. Dongre; M. G. Sharma; C. E. Antle e J. Button (1994) Binder Characterization and Evaluation Volume 3 : Physical Characterization, Report SHRP-A-369, Washington.

Anderson, D.; Y. Hir; M. Marasteanu; J. P. Planche; D. Martin e G. Gauthier (2001) Evaluation of fatigue criteria for asphalt binders. Transportation Research Record, v. 1766, p. 48–56. DOI:10.3141/1766-07

Bahia, H. U. e D. A. Anderson (1995) Strategic Highway Research Program binder rheological parameters: background and comparison with conventional properties. Transportation Research Record, v. 1488, p. 32-39.

Bahia, H. U.; D. I. Hanson; M. Zeng; H. Zhai; M. A. Kharti e R. M. Anderson (2001a) Characterization of modified asphalt binders in Superpave mix design. NCHRP report 459, National Academy Press, Washington, DC.

Bahia, H. U.; H. Zhai; M. Zeng; Y. Hu e P. Turner (2001b) Development of binder specification parameters based on character-ization of damage behavior. Association of Asphalt Paving Technologists, v. 70, p. 442-470.

Bahia, H. U.; H. Wen e C. M. Johnson (2010) Developments in intermediate temperature binder fatigue specifications. Transportation Research Circular E-C147, p. 25–33. DOI:10.17226/22903

Bonnetti, K.; K. Nam e H. U. Bahia (2002) Measuring and defining fatigue behavior of asphalt binders. Transportation Re-search Record, v. 1810, p. 33–43. DOI:10.3141/1810-05

Christensen, D. W. e D. A. Anderson (1992) Interpretation of dynamic test data for paving grade asphalt cements. Association of Asphalt Paving Technologists, v. 61, p. 67–116.

FRANC2D/L. (2016) Cornell Fracture Group, Cornell University. Disponível em: http://cfg.cornell.edu/software/. (Acesso em 10/11/2019).

Griffith, A. A. (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of The Royal Society of London, v. 221, p.163–198.

Hintz, C.; R. Velasquez; C. Johnson e H. U. Bahia (2011) Modification and validation of linear amplitude sweep test for binder fatigue specification. Transportation Research Record, v. 2207, p. 99–106. DOI:10.3141/2207-13

Hintz, C. (2012) Understanding mechanisms leading to asphalt binder fatigue. Tese (doutorado). The University of Wisconsin, Madison.

Irwin, G. R. (1957) Analysis of stresses and strains near the end of a crack traversing a plate. Journal of Applied Mechanics, v. 24, n. 3, p. 361–364.

Johnson, C. M. (2010) Estimating asphalt binder fatigue resistance using an accelerated test method. Tese (doutorado). Universi-ty of Wisconsin, Madison.

Kim, Y.; H. J. Lee; D. N. Little e Y. R. Kim (2006) A simple testing method to evaluate fatigue fracture and damage performance of asphalt mixtures. Association of Asphalt Paving Technologists, v. 75, p. 755–788.

Martins, A. T. (2014) Contribuição para a validação do ensaio de resistência ao dano por fadiga para ligantes asfálticos. Dissertação (mestrado). Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ.

Nascimento, L. A. H.; S. M. N. Rocha; E. H. Carlos; Y. R. Kim; M. Chacur e A. T. Martins (2014) Uso da mecânica do dano contínuo na caracterização de misturas asfálticas brasileiras. 21o Encontro de Asfalto, p. 1–14.

Nuñez, J. Y. M. (2013) Caracterização à fadiga de ligantes asfálticos modificados envelhecidos a curto e longo prazo. Dissertação (mestrado). Universidade de São Paulo, São Carlos.

Nuñez, J. Y. M.; E. D. Leonel e A. L. Faxina (2016) Fatigue characteristics of modified asphalt binders using fracture mecha-nics. Engineering Fracture Mechanics, v. 154, p. 1–11. DOI: 10.1016/j.engfracmech.2016.01.001

Pamplona, T. F.; J. Y. M. Nuñez e A. L. Faxina (2014) Desenvolvimentos recentes em ensaios de fadiga em ligantes asfálticos. Transportes, v. 22, n. 3, p. 12-25. DOI:10.14295/transportes.v22i3.682

Pronk, A. C. e P. C. Hopman (1991) Energy dissipation: the leading factor of fatigue. Highway Research: Sharing the Benefits. The United States Strategic Highway Research Program, p. 255–267. London, England.

Sabouri, M.; D. Mirzaeian e A. Moniri (2018) Effectiveness of Linear Amplitude Sweep (LAS) asphalt binder test in predicting asphalt mixtures fatigue performance. Construction and Building Materials, v. 171, p. 281–290. DOI:10.1016/j.conbuildmat.2018.03.146

Safaei, F. e C. H. Castorena (2016) Temperature effects of Linear Amplitude Sweep testing and analysis. Transportation Re-search Record, v. 2574, p. 92–100. DOI:10.3141/2574-10

Shenoy, A. (2002) Fatigue testing and evaluation of asphalt binders using the dynamic shear rheometer. Journal of Testing and Evaluation, v. 30, n. 4, p. 303–312. DOI:10.1520/JTE12320J

Soenen, H.; C. de La Roche e P. Redelius (2003) Fatigue behaviour of bituminous materials: from binders to mixes. Road Materials and Pavement Design, v. 4, n. 1, p. 7–27. DOI:10.1080/14680629.2003.9689938

Timoshenko, S. P. e J. Gere (1983) Mecânica dos Sólidos. LTC Ed., v. 1, Rio de Janeiro.

Underwood, B. S. (2011) Multiscale constitutive modeling of asphalt concrete. Tese (doutorado). North Carolina State Universi-ty, Raleigh, North Carolina.

Published

2020-12-15

How to Cite

Garcia, D. C., Faxina, A. L., & Leonel, E. D. (2020). Application of a parameter based on linear-elastic fracture mechanics to predict the fatigue resistance of asphalt binders. TRANSPORTES, 28(5), 99–116. https://doi.org/10.14295/transportes.v28i5.2090

Issue

Section

Artigos