Modelagem numérica do uso do ground penetrating radar na investigação de defeitos em pavimentos flexíveis
DOI:
https://doi.org/10.14295/transportes.v28i1.1883Keywords:
GPR-Ground Penetrating Radar, FDTD, GPR 2D numerical simulation, Evaluation, Distresses, Flexible pavement.Abstract
Pavement distress is only identified when they reach the surface and become visible to the naked eye. The diagnosis of internal failures is made by destructive and sampling methods. The ground penetrating radar is a promising non-destructive testing (NDT) technique, used in pavement surveys since the 1970s. This work aims to show the potential of the GPR method for the investigation of pavement distress and its genesis through finite-difference time-domain (FDTD) simulation of the GPR signal, with the gprMax numerical simulator. They were modeled in three different scenarios, in which will be represented: a pavement structure without apparent distress; a structure with subgrade rutting and a structure with a patch. The responses obtained by modeling were compared to the results of field surveys. As a contribution of the article it can be demonstrated the importance of modeling as a tool in the training of professionals and in the planning of field services, besides facilitating the interpretation of field data.Downloads
References
AASHTO (2004). AASHTO R 37-04: Standard practice for application of ground penetrating radar (GPR) to highways. Washington, D.C.: American Association of State Highway and Transportation Officials.
Annan, A. P. (2001). Ground penetrating radar workshop notes. Mississauga: Sensors & Software.
ASTM (2011). ASTM D6432 - 11: Standard guide for using the surface ground penetrating radar method for subsurface investigation. West Conshohocken, PA: ASTM International. DOI:10.1520/D6432-99.
ASTM (2015). ASTM D4748 - 10: Standard test method for determining the thickness of bound pavement layers using short-pulse radar. West Conshohocken, PA: ASTM International. DOI:10.1520/D4748-10R15.
Balbo, J. T (2007). Pavimentação asfáltica: materiais, projeto e restauração. São Paulo: Oficina de Textos.
Benedetto, A.; Tosti, F.; Pajewski, L.; D'Amico, F.; Kusayanagi, W. (2014). FDTD simulation of the GPR signal for effective inspection of pavement damages. Proceedings of The 15th International Conference On Ground Penetrating Radar, [s.l.], p.513-518 2014. IEEE. DOI: 10.1109/ICGPR.2014.6970477.
Cassidy, N. J. (2009). Electrical and magnetic properties of rocks, soils and fluids. In: Ground penetrating radar: theory and applications. 1. ed. United Kingdom: Elsevier Science. p. 41–72. DOI:10.1016/B978-0-444-53348-7.00002-8.
Chen, D. H.; Chen, T.-T.; Scullion, T.; Bilyeu, J., (2006). Integration of field and laboratory testing to determine the causes of a premature pavement failure. Canadian Journal of Civil Engineering, v. 33, n. 11, p. 1345–1358. DOI:10.1139/l06-079.
Clemeña, G. G.; Sprinkel, M. M.; Long, R. (1986). Use of ground-penetrating radar for detecting voids underneath a jointed concrete pavement. Charlottesville, Virginia: Virginia Highway & Transportation Research Council in Cooperation with the U.S. Department of Transportation. Disponível em: https://rosap.ntl.bts.gov/view/dot/19120.
Diamanti, N.; Redman, D. (2012). Field observations and numerical models of GPR response from vertical pavement cracks. Journal of Applied Geophysics, Recent, Relevant and Advanced GPR Studies in Applied Geophysics. v. 81, p. 106–116. DOI:10.1016/j.jappgeo.2011.09.006.
EUROGPR. The European GPR Association guidelines for pavement structural surveys. [s.l: s.n.]. Disponível em: http://www.eurogpr.org/vn2/images/documents/GS1601_EG_Pavements_Policy_Draft_v1_0_160412.pdf.
Françoso, M. T.; Mota, C. O.; Lima, T. R. S. M.; Peixoto, C. D. F. (2013). Nondestructive testing in asphalt pavements using ground penetrating radar (GPR). Applied Mechanics and Materials, v. 303–306, p. 525–528. DOI:10.4028/www.scientific.net/AMM.303-306.525.
Gonçalves, F. P.; Ceratti, J. A. P. (1998). Utilização do ground penetrating radar na avaliação de pavimentos. In: Anais, São Paulo. Anais. In: REUNIÃO ANUAL DE PAVIMENTAÇÃO, 31. São Paulo: ABPv. Disponível em: http://usuarios.upf.br/~pugliero/arquivos/19.pdf.
Grégoire, C.; Van Der Wielen, A.; Van Geem, C.; Drevet, J.-P. (2016). BRRC Method of Measurement ME 91/16: Methodologies for the use of ground-penetrating radar in road condition surveys. Brussels: Belgian Road Research Center. Disponível em: http://www.brrc.be/en/item/me9116.
Grote, K.; Hubbard, S.; Harvey, J.; Rubin, Y. (2005). Evaluation of infiltration in layered pavements using surface GPR reflection techniques. Journal of Applied Geophysics, v. 57, n. 2, p. 129–153. DOI: 10.1016/j.jappgeo.2004.10.002.
Highways England. Design Manual for Roads and Bridges: Volume 7 - Pavement design and maintenance, Section 3 - Pavement maintenance assessment, Part 2 - Data for pavement assessment HD 29/08. [s.l: s.n.]. Disponível em: http://www.standardsforhighways.co.uk/ha/standards/dmrb/vol7/section3/hd2908.pdf.
Hironaka, M. C.; Hitchcock, R. D.; Forrest, J. B. (1976). Detection of voids underground and under pavements. Port Hueneme, California: Naval Civil Engineering Laboratory. Disponível em: https://apps.dtic.mil/dtic/tr/fulltext/u2/a030997.pdf.
Kovacs, A.; Morey, R. M. (1983). Detections of cavities under concrete pavement. [s.l.]: Cold Regions Research and Engineering Laboratory, Department of the Army. Disponível em: https://apps.dtic.mil/dtic/tr/fulltext/u2/a131851.pdf.
Krysiński, L.; Sudyka, J. (2013). GPR habilities in investigation of the pavement transversal cracks. Journal of Applied Geophysics, Ground Penetrating Radar. v. 97, p. 27–36. DOI:10.1016/j.jappgeo.2013.03.010.
Lopes, O. A. (2009). Uso do GPR (ground penetrating radar) em trechos de pavimentos da Cidade Universitária da UFRJ. 2009. Coordenação dos Programas de Pós Graduação de Engenharia, Universidade Federal do Rio de Janeiro, Rio de Janeiro. Disponível em: http://www.coc.ufrj.br/pt/dissertacoes-de-mestrado/109-msc-pt-2009/1646-osvaldo-antunes-lopes.
Mara Nord Project. The use of GPR in road rehabilitation projects. [s.l: s.n.]. Disponível em: http://maranord.ramk.fi/static/content_files/MaraNord_GPR_rehab_guidelines_Version_3_0.pdf.
Medina, J. de; Motta, L. M. G. da. Mecânica dos pavimentos. 2. ed. [s.l: s.n.]
NCHRP (2004). Evaluation of existing pavements for rehabilitation. In: NCHRP 1-37A, Final Report: Guide for mechanistic-empirical design of new and rehabilitated pavement structures. [s.l.] Transportation Research Board.
Porsani, J. L. (1999). Ground penetrating radar: proposta metodológica de emprego em estudos geológico - geotécnicos nas regiões de Rio Claro e Descalvado - SP. IGCE UNESP, Rio Claro.
RADAN 7: RAdar Data ANalyzer for Windows (2017). Versão 7.5.18.02270. [S. l.]: Geophysical Survey Systems, Inc. (GSSI). Disponível em: https://support.geophysical.com/GSSIsupport/.
Reflex-Win (2019). Versão 9.0.5. Karlsruhe, Germany: Sandmeier geophysical research. Disponível em: https://www.sandmeier-geo.de/download.html.
Saarenketo, T. (2006). Electrical properties of road materials and subgrade soils and the use of ground penetrating radar in traffic infrastructure surveys. 2006. Faculty of Science, Department of Geosciencies, University of Oulu, Oulu.
Santos, E. J. F.; Françoso, M. T.; Almeida, L. C. de; Paiva, C. E. L.; Sznelwar, M. (2015). Avaliação geofísica com GPR de pavimento rígido de concreto de cimento Portland. In: Anais, Bonito, MS. Anais. In: CONGRESSO BRASILEIRO DE CONCRETO, 57 - CBC2015. Bonito, MS.
Silva, L. A. da (2014). Uso de georadar (GPR) e retroanálises de deflexões como suporte a análises probabilísticas de desempenho de pavimentos. 2014. Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Civil e Ambiental, Brasília. Disponível em: http://repositorio.unb.br/handle/10482/17355.
Silva, L.; Borges, W.; Cunha, L.; Branco, R.; Farias, M. (2011). Mapeamento com o GPR das interfaces geotécnicas do pavimento rígido do Aeroporto Santos Dumont, Rio de Janeiro/RJ. In: Anais, Rio de Janeiro. Anais... In: 12TH INTERNATIONAL CON-GRESS OF THE BRAZILIAN GEOPHYSICAL SOCIETY & EXPOGEF. Rio de Janeiro: Brazilian Geophysical Society. DOI:10.1190/sbgf2011-097.
Solla, M.; Lagüela, S.; González-Jorge, H.; Arias, P. (2014). Approach to identify cracking in asphalt pavement using GPR and infra-red thermographic methods: Preliminary findings. NDT & E International, v. 62, p. 55–65. DOI:10.1016/j.ndteint.2013.11.006.
Solla, M.; Lorenzo, H.; Pérez-Garcia, V. (2016). Ground penetrating radar: fundamentals, methodologies and applications in structures and infraestructure. In: Non-destructive techniques for the evaluation of structures and infrastructure. London: CRC Press. p. 89–107. DOI: 10.1201/b19024.
Tosti, F.; Benedetto, A. (2012). Pavement Pumping Prediction Using Ground Penetrating Radar. Procedia - Social and Behavioral Sciences, SIIV-5th International Congress - Sustainability of Road Infrastructures 2012. v. 53, p. 1044–1053. DOI:10.1016/j.sbspro.2012.09.954.
TopoEVN (2011). Versão 6.9.5.40. [S. l.]: Métrica. 1 CD-ROM.
Treiber, H. M.; Françoso, M. T.; Almeida, L. C. de (2016). Aplicações do ground penetrating radar na caracterização de estruturas de pavimento. In: CONGRESSO INTERNACIONAL SOBRE PATOLOGIA E REABILITAÇÃO DE ESTRUTURAS, XII - CINPAR 2016. Porto, Portugal.
Venmans, A. A. M.; Van de Ven, R.; Kollen, J. (2016). Rapid and Non-intrusive Measurements of Moisture in Road Constructions Using Passive Microwave Radiometry and GPR – Full Scale Test. Procedia Engineering, Advances in Transportation Geotech-nics III. v. 143, p. 1244–1251. DOI:10.1016/j.proeng.2016.06.111.
Vieira, R.; Gandolfo, O. (2013). Investigando a estrutura do pavimento por método não destrutivo (GPR). In: Anais, Gramado. Anais. In: REUNIÃO ANUAL DE PAVIMENTAÇÃO, 42 / ENCONTRO NACIONAL DE CONSERVAÇÃO RODOVIÁRIA, 16. Gramado: ABPv. Disponível em: https://www.researchgate.net/publication/268745098.
Warren, C., Giannopoulos, A., Giannakis I. (2016). gprMax: Open source software to simulate electromagnetic wave propaga-tion for Ground Penetrating Radar, Comput Phys Commun, 209, 163-170. DOI:10.1016/j.cpc.2016.08.020.
Warren, C., Giannopoulos, A. (2018). A. gprMax: Open source software to simulate electromagnetic wave propagation for Ground Penetrating Radar. Versão 3.1.4. Edinburgh, Scotland: [s. n.]. Disponível em: http://www.gprmax.com/.
Downloads
Published
How to Cite
Issue
Section
License
Authors who submit papers for publication by TRANSPORTES agree to the following terms:
- The authors retain the copyright and grant Transportes the right of first publication of the manuscript, without any financial charge, and waive any other remuneration for its publication by ANPET.
- Upon publication by Transportes, the manuscript is automatically licensed under the Creative Commons License CC BY 4.0 license. This license permits the work to be shared with proper attribution to the authors and its original publication in this journal.
- Authors are authorized to enter into additional separate contracts for the non-exclusive distribution of the version of the manuscript published in this journal (e.g., publishing in an institutional repository or as a book chapter), with recognition of the initial publication in this journal, provided that such a contract does not imply an endorsement of the content of the manuscript or the new medium by ANPET.
- Authors are permitted and encouraged to publish and distribute their work online (e.g., in institutional repositories or on their personal websites) after the editorial process is complete. As Transportes provides open access to all published issues, authors are encouraged to use links to the DOI of their article in these cases.
- Authors guarantee that they have obtained the necessary authorization from their employers for the transfer of rights under this agreement, if these employers hold any copyright over the manuscript. Additionally, authors assume all responsibility for any copyright infringements by these employers, releasing ANPET and Transportes from any responsibility in this regard.
- Authors assume full responsibility for the content of the manuscript, including the necessary and appropriate authorizations for the disclosure of collected data and obtained results, releasing ANPET and Transportes from any responsibility in this regard.