Statistical models for the estimation of the origin-destination matrix from traffic counts

Authors

  • Anselmo Ramalho Pitombeira Neto Universidade Federal do Ceará http://orcid.org/0000-0001-9234-8917
  • Francisco Moraes Oliveira Neto Universidade Federal do Ceará
  • Carlos Felipe Grangeiro Loureiro Universidade Federal do Ceará

DOI:

https://doi.org/10.14295/transportes.v25i4.1344

Keywords:

Origin-destination matrix, Transportation demand, Statistical models.

Abstract

In transportation planning, one of the first steps is to estimate the travel demand. The final product of the estimation process is an origin-destination (OD) matrix, whose entries correspond to the number of trips between pairs of origin-destination zones in a study region. In this paper, we review the main statistical models proposed in the literature for the estimation of the OD matrix based on traffic counts. Unlike reconstruction models, statistical models do not aim at estimating the exact OD matrix corresponding to observed traffic volumes, but they rather aim at estimating the parameters of a statistical model of the population of OD matrices. Initially we define the estimation problem, emphasizing its underspecified nature, which has lead to the development of several models based on different approaches. We describe static models whose parameters are estimated by means of maximum likelihood, the method of moments, and Bayesian inference. We also describe  some recent dynamic models. Following that, we discuss research questions related to the underspecification problem, model assumptions and the estimation of the route choice matrix, and indicate promising research directions.

Downloads

Download data is not yet available.

Author Biographies

Anselmo Ramalho Pitombeira Neto, Universidade Federal do Ceará

Possui graduação em Engenharia de Produção Mecânica (Universidade Federal do Ceará, 2005), mestrado em Engenharia Mecânica  (Universidade de São Paulo , 2008) e doutorado em Engenharia de Transportes (Universidade Federal do Ceará , 2015). É professor adjunto do Departamento de Engenharia de Produção da Universidade Federal do Ceará, no qual leciona as disciplinas de Pesquisa Operacional, Simulação de Sistemas e Economia da Engenharia. Possui publicações nas revistas Computers and Industrial Engineering, Journal of Advanced Transportation, Transportes, Journal of Construction Engineering and Management, e International Journal of Simulation Modelling, e em anais de eventos como ENEGEP, SIMPEP, SBPO, ANPET, ICPR e WinterSim. Seus interesses de pesquisa incluem a aplicação de programação matemática, meta-heurísticas, modelagem e simulação estocástica, e métodos estatísticos a problemas em sistemas de produção e transportes. Lidera o grupo de pesquisa OPL - Pesquisa Operacional em Produção e Logística.

Francisco Moraes Oliveira Neto, Universidade Federal do Ceará

Departamento de Engenharia de Transportes/Planejamento de transportes

Carlos Felipe Grangeiro Loureiro, Universidade Federal do Ceará

Departamento de Engenharia de Transportes/Planejamento de transportes

References

Ashok, K. and M. E. Ben-Akiva (2002) Estimation and prediction of time-dependent origin-destination flows with a stochastic mapping to path flows and link flows. Transportation Science, v. 36, p. 184–198. DOI: 10.1287/trsc.36.2.184.56

Bekhor, S.; M. E. Ben-Akiva and M. S. Ramming (2006) Evaluation of choice set generation algorithms for route choice models. Annals of Operations Research, v. 144, p. 235–247. DOI: 10.1007/s10479-006-0009-8

Ben-Akiva, M. E. and S. R. Lerman (1985) Discrete choice analysis: Theory and application to travel demand. MIT Press, Cambridge, MA, USA.

Caceres, N.; L. M. Romero and F. G. Benitez (2013) Inferring origin-destination trip matrices from aggregate volumes on groups of links: a case study using volumes inferred from mobile phone data. Journal of Advanced Transportation, v. 47, p. 650-666. DOI: 10.1002/atr.187

Carvalho, L. E. (2014) A Bayesian statistical approach for inference on static origin-destination matrices in transportation studies. Technometrics, v. 56, p. 225–237. DOI: 10.1080/00401706.2013.826144

Cascetta, E. (2009) Transportation Systems Analysis: Models and Applications (2nd ed.). Springer, New York, NY, USA.

Cascetta, E. (1993) Dynamic estimators of origin-destination matrices using traffic counts. Transportation Science, v. 27, p. 363–373. DOI: 10.1287/trsc.27.4.363

Castillo, E.; J. M. Menéndez and P. Jiménez (2008) Trip matrix and path flow reconstruction and estimation based on plate scanning and link observations. Transportation Research Part B, v. 42, p. 455–481. DOI: 10.1016/j.trb.2007.09.004

Chen, A. S.; Ryu; X. Xu and K. Choi (2014) Computation and application of the paired combinatorial logit stochastic user equilibrium problem. Computers and Operations Research, v. 43, p. 68–77. DOI: 10.1016/j.cor.2013.08.022

Cremer, M. and H. Keller (1987) A new class of dynamic methods for the identification of origin-destination flows. Transportation Research Part B, v. 21, p. 117–132. DOI: 10.1016/0191-2615(87)90011-7

Daganzo, C. F. and Y. Sheffi (1977) On stochastic models of traffic assignment. Transportation Science, v. 11, n. 3, p. 253–274. DOI: 10.1287/trsc.11.3.253

Gelman, A.; J. B. Carlin; H. S. Stern; D. B. Dunson; A. Vehtari and D. B. Rubin (2013) Bayesian Data Analysis (3rd ed.). Chapman & Hall, Boca Raton, FL, USA.

Geman, S. and D. Geman (1984) Stochastic relaxation, gibbs distributions, and the bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, v. 6, n. 6, p. 721–741. DOI: 10.1109/TPAMI.1984.4767596

Hastings, W. K. (1970) Monte carlo sampling methods using markov chains and their applications. Biometrika, v. 57, n. 1, p. 97–109. DOI: 10.2307/2334940

Hazelton, M. L. (1998) Some remarks on stochastic user equilibrium. Transportation Research Part B, v. 32, p. 101–108. DOI: 10.1016/S01912615(97)00015-5

Hazelton, M. L. (2000) Estimation of origin-destination matrices from link flows on uncongested networks. Transportation Research Part B, v. 34, p. 549–566. DOI: 10.1016/S0191-2615(99)00037-5

Hazelton, M. L. (2001) Inference for origin-destination matrices: estimation, prediction and reconstruction. Transportation Research Part B, v. 35, p. 667–676. DOI: 10.1016/S0191-2615(00)00009-6

Hazelton, M. L. (2003) Some comments on origin-destination matrix estimation. Transportation Research Part A, v. 37, p. 811–822. DOI: 10.1016/S0965-8564(03)00044-2

Hazelton, M. L. (2008) Statistical inference for time varying origin-destination matrices. Transportation Research Part B, v. 42, p. 542–552. DOI: 10.1016/j.trb.2007.11.003

Hazelton, M. L. (2010) Bayesian inference for network-based models with a linear inverse structure. Transportation Research Part B, v. 44, p. 674–685. DOI: 10.1016/j.trb.2010.01.006

Lo, H.-P.; N. Zhang and W. H. K. Lam (1996) Estimation of an origin-destination matrix with random link choice proportions: a statistical approach. Transportation Research Part B, v. 30, p. 309–324. DOI: 10.1016/0191-2615(95)00036-4

Lo, H.-P. and C.-P. Chan (2003) Simultaneous estimation of an origin-destination matrix and link choice proportions using traffic counts. Transportation Research Part A, v. 37, p. 771–788. DOI: 10.1016/S0965-8564(03)00048-X

Marzano, V.; A. Papola and F. Simonelli (2009) Limits and perspectives of effective O-D matrix correction using traffic counts. Transportation Research Part C, v. 17, p. 120–132. DOI: 10.1016/j.trc.2008.09.001

Nakayama, S. and D. Watling (2014) Consistent formulation of network equilibrium with stochastic flows. Transportation Research Part B, v. 66, p. 50–69. DOI: 10.1016/j.trb.2014.03.007

Oliveira Neto, F. M.; A. R. Pitombeira Neto; C. F. G. Loureiro and B. V. Bertoncini (2016) Discussão conceitual sobre métodos de reconstrução de matrizes origem-destino estáticas em redes de transportes. Transportes, v.24, n.1, p. 107-119. DOI: 10.14295/transportes.v24i1.1017

Ortúzar, J. de D. and L. G. Willumsen (2011) Modelling Transport (4th ed.). Wiley, Chichester, UK. Parry, K. and M. L. Hazelton (2012) Estimation of origin-destination matrices from link count and sporadic routing data. Transportation Research Part B, v. 46, p. 175–188. DOI: 10.1016/j.trb.2011.09.009

Parry, K and M. L. Hazelton (2013) Bayesian inference for day-to-day dynamic traffic models. Transportation Research Part B, v. 50, p. 104–115. DOI: 10.1016/j.trb.2013.01.003

Pitombeira-Neto, A. R. and C. F. G. Loureiro (2016) A dynamic linear model for the estimation of time-varying origin-destina-tion matrices from link counts. Journal of Advanced Transportation, v. 50, n. 8, p. 2116–2129. DOI: 10.1002/atr.1449

Robillard, P. (1975) Estimating the OD matrix from observed link volumes. Transportation Research, v. 9, p. 123–128. DOI: 10.1016/00411647(75)90049-0

Shao, H.; W. H. K. Lam; A. Sumalee; A. Chen and M. L. Hazelton (2014) Estimation of mean and covariance of peak hour origin-destination demands from day-to-day traffic counts. Transportation Research Part B, v. 68, p. 52–75. DOI: 10.1016/j.trb.2014.06.002

Spiess, H. (1987) A maximum likelihood model for estimating origin-destination matrices. Transportation Research Part B, v. 21, p. 395–412. DOI: 10.1016/0191-2615(87)90037-3

Tebaldi, C. and M. West (1998) Bayesian inference on network traffic using link count data. Journal of the American Statistical Association, v. 93, p. 557–573. DOI: 10.1080/01621459.1998.10473707

Timms, P. (2001) A philosophical context for methods to estimate origin-destination trip matrices using link counts. Transport Reviews, v. 21, p. 269–301. DOI: 10.1080/713868144

Vardi, Y. (1996) Network tomography: Estimating source-destination traffic intensities from link data. Journal of the American Statistical Association, v. 91, p. 365–377. DOI: 10.2307/2291416

Willumsen, L. G. (1981) Simplified transport models based on traffic counts. Transportation, v. 10, p. 257–258. DOI: 10.1007/BF00148462

Willumsen, L. G. (1984) Estimating time dependent trip matrices from traffic counts. Proceedings of the Ninth International Symposium on Transportation and Traffic Theory, Delft, v. 1, p. 397–411.

Zhou, Z.; A. Chen and S. Bekhor (2012) C-logit stochastic user equilibrium model: formulations and solution algorithm. Transportmetrica, v. 8, p. 17–41. DOI: 10.1080/18128600903489629

Downloads

Published

2017-12-30

How to Cite

Pitombeira Neto, A. R., Oliveira Neto, F. M., & Loureiro, C. F. G. (2017). Statistical models for the estimation of the origin-destination matrix from traffic counts. TRANSPORTES, 25(4), 1–13. https://doi.org/10.14295/transportes.v25i4.1344

Issue

Section

Artigos