Influência da resistência elétrica em um protótipo de geração de energia em pavimentos rodoviários a partir da piezoeletricidade

Autores

DOI:

https://doi.org/10.58922/transportes.v32i2.2881

Palavras-chave:

PZT, Asphalt mixture, Sustainability

Resumo

A produção de energia elétrica a partir de elementos piezoelétricos no pavimento rodoviário tem sido objeto de estudo de pesquisas nacionais e internacionais. Contudo, um dos impasses é a equivalência das resistências elétricas interna e externa do protótipo. O objetivo deste artigo foi analisar a influência da variação das resistências externas em um protótipo de geração de energia. Para isso, foram aplicadas 5 cargas e 3 frequências distintas para simular o tráfego, e 5 valores de resistência elétrica. Como resultados, observou-se que para maiores frequências houve um incremento de até 90% na saída elétrica quando comparadas as menores resistências elétricas com as maiores. Ainda, a introdução do indutor e da caixa de resistência no circuito podem contribuir para a eficiência do protótipo quando aplicado em campo.

Downloads

Não há dados estatísticos.

Biografia do Autor

Bruno Cavalcante Mota, Universidade Federal do Rio de Janeiro

Doutorando em Engenharia Civil pela Universidade Federal do Rio de Janeiro. Mestre em Engenharia de Transportes e Engenheiro Civil pela Universidade Federal do Ceará. Atuante na área de Infraestrutura de Transportes.

Suelly Helena de Araújo Barroso, Universidade Federal do Ceará

Engenheira Civil e Professora Titular da UFC. Pós-Doutora pela NCSU/USA. Mestre e Doutora em Engenharia pela USP. Atua na área de pavimentação com ênfase em solos, imprimação, revestimentos delgados, bioligantes e uso de resíduos. É orientadora de mestrado e doutorado no Programa de Pós-Graduação em Engenharia de Transportes da UFC.

Referências

Blue Sol (2020) Energia Solar e Eólica: Preço, Diferenças e Melhores Locais. Disponı́vel em: <https://blog.bluesol.com.br/energia-solar-e-eolica/> (acesso em 16/01/2021).

Callister, W.D. (2016) Ciência e Engenharia de Materiais: uma Introdução (9a ed.). Rio de Janeiro: LTC.

Cao, Y.; A. Sha; Z. Liu et al. (2020) Electric energy output model of a piezoelectric transducer for pavement application under vehicle load excitation. Energy, v. 211, p. 118595. DOI: 10.1016/j.energy.2020.118595. DOI: https://doi.org/10.1016/j.energy.2020.118595

Ding, G.; X. Zhao; F. Sun et al. (2018) Effect of subgrade on piezoelectric energy harvesting under traffic loads. The International Journal of Pavement Engineering, v. 19, n. 8, p. 661-674. DOI: 10.1080/10298436.2017.1413241. DOI: https://doi.org/10.1080/10298436.2017.1413241

Duarte, F.; J.P. Champalimaud e A. Ferreira (2016) Waynergy vehicles: an innovative pavement energy harvest system. Proceedings of the Institution of Civil Engineers. Municipal Engineer, v. 169, n. 1, p. 13-18. DOI: 10.1680/muen.14.00021. DOI: https://doi.org/10.1680/muen.14.00021

Dutoit, N.E.; B.L. Wardle e S. Kim (2005) Design considerations for mems-scale piezoelectric mechanical vibration energy harvesters. Integrated Ferroelectrics, v. 71, n. 1, p. 121-160. DOI: 10.1080/10584580590964574. DOI: https://doi.org/10.1080/10584580590964574

ENEL (2023) Taxas, Tarifas e Impostos. Disponível em: <https://www.enel.com.br/pt-ceara/Tarifas_Enel.html> (acesso em 16/01/2023).

EPE (2020) Demanda de energia. In EPE (ed.) Plano Decenal de Expansão de Energia 2029. Brasília: Ministério de Minas e Energia. Disponível em: <https://www.epe.gov.br/sites-pt/publicacoes-dados-abertos/publicacoes/PublicacoesArquivos/publicacao-423/ topico-481/02%20Demandada%20de%20Energia.pdf> (acesso em 28/06/2022).

Harb, A. (2011) Energy harvesting: state-of-the-art. Renewable Energy, v. 36, n. 10, p. 2641-2654. DOI: 10.1016/j.renene.2010.06.014. DOI: https://doi.org/10.1016/j.renene.2010.06.014

Heller, L.F.; L.A.T. Brito; M.A.J. Coelho et al. (2023) Development of a pavement-embedded piezoelectric harvester in a real traffic environment. Sensors, v. 23, n. 9, p. 4238. DOI: 10.3390/s23094238. PMid:37177442. DOI: https://doi.org/10.3390/s23094238

Heywang, W. e H. Thomann (1984) Tailoring of piezoelectric ceramics. Annual Review of Materials Science, v. 14, n. 1, p. 27-47. DOI: 10.1146/annurev.ms.14.080184.000331. DOI: https://doi.org/10.1146/annurev.ms.14.080184.000331

Jiang, X.; Y. Li; J. Li et al. (2014) Piezoelectric energy harvesting from traffic-induced pavement vibrations. Journal of Renewable and Sustainable Energy, v. 6, n. 4, p. 043110. DOI: 10.1063/1.4891169. DOI: https://doi.org/10.1063/1.4891169

Kázmierski, T.J. e S. Beeby (2011) Energy Harvesting Systems: Principles, Modeling and Applications. New York: Springer. DOI: 10.1007/978-1-4419-7566-9. DOI: https://doi.org/10.1007/978-1-4419-7566-9

Khaligh, A. e O.G. Onar (2010) Energy Harvesting: Solar, Wind, and ocean Energy Conversion Systems. Boca Raton: CRC Press Inc.

Kim, S.; I. Sternb; J. Shen et al. (2018) Energy harvesting assessment using PZT sensors and roadway materials. International Journal of Thermal & Environmental Engineering, v. 16, n. 1, p. 19-25. DOI: 10.5383/ijtee.16.01.003. DOI: https://doi.org/10.5383/ijtee.16.01.003

Medina, J. e L.M.G. Motta (2015) Mecânica dos Pavimentos (3a ed.). Rio de Janeiro: Interciência.

Ministério da Infraestrutura (2021) Frota de Veículos – 2021. Brasília. Disponível em: <https://www.gov.br/infraestrutura/pt-br/ assuntos/transito/conteudo-denatran/frota-de-veiculos-2021> (acesso em: 31/03/2022).

Mitcheson, P.D.; E.M. Yeatman; G.K. Rao et al. (2008) Energy harvesting from human and machine motion for wireless electronic devices. Proceedings of the IEEE, v. 96, n. 9, p. 1457-1486. DOI: 10.1109/JPROC.2008.927494. DOI: https://doi.org/10.1109/JPROC.2008.927494

Mota, B.C. (2019) O Pavimento como Instrumento de Geração de Energia para o Desenvolvimento Sustentável de Cidades Inteligentes. Monografia (conclusão de curso). Universidade Federal do Ceará, Fortaleza.

Mota, B.C. e S.H.A. Barroso (2021) O uso do pavimento para geração de energia e desenvolvimento sustentável de cidades inteligentes. Transportes, v. 29, n. 2, p. 1-15. DOI: 10.14295/transportes.v29i2.2380. DOI: https://doi.org/10.14295/transportes.v29i2.2380

Mota, B.C.; B. Albuquerque Neto; S.H.A. Barroso et al. (2022) Characterization of piezoelectric energy production from asphalt pavements using a numerical-experimental framework. Sustainability, v. 14, n. 15, p. 9584. DOI: 10.3390/su14159584. DOI: https://doi.org/10.3390/su14159584

Moure, A.; M.A.I. Izquierdo Rodríguez; S. Rueda et al. (2016) Feasible integration in asphalt of piezoelectric cymbals for vibration energy harvesting. Energy Conversion and Management, v. 112, p. 246-253. DOI: 10.1016/j.enconman.2016.01.030. DOI: https://doi.org/10.1016/j.enconman.2016.01.030

Najini, H. e S.A. Muthukumaraswamy (2017) Piezoelectric energy generation from vehicle traffic with technoeconomic analysis. Journal of Renewable Energy, v. 2017, p. 1-16. DOI: 10.1155/2017/9643858. DOI: https://doi.org/10.1155/2017/9643858

Papagiannakis, A.T.; A. Montoya; S. Dessouky et al. (2017) Development and evaluation of piezoelectric prototypes for roadway energy harvesting. Journal of Energy Engineering, v. 143, n. 5, p. 04017034. DOI: 10.1061/(ASCE)EY.1943-7897.0000467. DOI: https://doi.org/10.1061/(ASCE)EY.1943-7897.0000467

Pinto, P.C. (2020) Simulação da implantação de dispositivo de energia piezoelétrica em pavimento de cruzamentos urbanos. Revista Eletrônica em Gestão, Educação e Tecnologia Ambiental, v. 24, e39. DOI: https://doi.org/10.5902/2236117045212

Roshani, H.; P. Jagtap; S. Dessouky et al. (2018) Theoretical and experimental evaluation of two roadway piezoelectric-based energy harvesting prototypes. Journal of Materials in Civil Engineering, v. 30, n. 2, p. 04017264. DOI: 10.1061/(ASCE) MT.1943-5533.0002112. DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0002112

Song, Y.; C.H. Yang; S.K. Hong et al. (2016) Road energy harvester designed as a macro-power source using the piezoelectric effect. International Journal of Hydrogen Energy, v. 41, n. 29, p. 12563-12568. DOI: 10.1016/j.ijhydene.2016.04.149. DOI: https://doi.org/10.1016/j.ijhydene.2016.04.149

Triunfo Concepa (2018) Estratégias de Eficiência Energética em Praças de Pedágio Rodoviários. Porto Alegre: ANTT.

Vale, A.C.F. (2020) Analisys of the Evolution of Permanent Deformation of Asphalt Mixtures Using the Stress Sweep Rutting (SSR) Test Methodology. Dissertação (mestrado). Universidade Federal do Ceará, Fortaleza.

Wang, H. e C. Sun (2016) Finite element analysis on a square canister piezoelectric energy harvester in asphalt pavement. World Journal of Engineering and Technology, v. 4, n. 2, p. 361-373. DOI: 10.4236/wjet.2016.42035. DOI: https://doi.org/10.4236/wjet.2016.42035

Wang, S.; C. Wang; G. Yu et al. (2020) Development and performance of a piezoelectric energy conversion structure applied in pavement. Energy Conversion and Management, v. 207, p. 112571. DOI: 10.1016/j.enconman.2020.112571. DOI: https://doi.org/10.1016/j.enconman.2020.112571

Wang, S.; C. Wang; H. Yuan et al. (2023) Size effect of piezoelectric energy harvester for road with high efficiency electrical properties. Applied Energy, v. 330, p. 120379. DOI: 10.1016/j.apenergy.2022.120379. DOI: https://doi.org/10.1016/j.apenergy.2022.120379

Yao, L.; H.D. Zhao; Z.Y. Dong et al. (2011) Laboratory testing of piezoelectric bridge transducers for asphalt pavement energy harvesting. Key Engineering Materials, v. 492, p. 172-175. DOI: 10.4028/www.scientific.net/KEM.492.172. DOI: https://doi.org/10.4028/www.scientific.net/KEM.492.172

Yoder, E.J. e M.W. Witczak (1975) Principles of Pavement Design (2nd ed., 711 p.). New York: John Wiley & Sons. DOI: 10.1002/9780470172919. DOI: https://doi.org/10.1002/9780470172919

Yuan, H.; J. Liu; C. Wang et al. (2024) Optimization of piezoelectric device with both mechanical and electrical properties for power supply of road sensors. Applied Energy, v. 364, p. 123113. DOI: 10.1016/j.apenergy.2024.123113. DOI: https://doi.org/10.1016/j.apenergy.2024.123113

Zhang, W.; G. Ding e J. Wang (2021) Road energy harvesting characteristics of damage-resistant stacked piezoelectric ceramics. Ferroelectrics, v. 570, n. 1, p. 37-56. DOI: 10.1080/00150193.2020.1839254. DOI: https://doi.org/10.1080/00150193.2020.1839254

Zhu, L.; R. Chen e X. Liu (2012) Theoretical analyses of the electronic breaker switching method for nonlinear energy harvesting interfaces. Journal of Intelligent Material Systems and Structures, v. 23, n. 4, p. 441-451. DOI: 10.1177/1045389X11435433. DOI: https://doi.org/10.1177/1045389X11435433

Downloads

Publicado

30-08-2024

Como Citar

Mota, B. C., & Barroso, S. H. de A. (2024). Influência da resistência elétrica em um protótipo de geração de energia em pavimentos rodoviários a partir da piezoeletricidade. TRANSPORTES, 32(2), e2881. https://doi.org/10.58922/transportes.v32i2.2881

Edição

Seção

Artigos Vencedores do Prêmio ANPET Produção Científica