Impacto de lombadas e travessias elevadas na velocidade de veículos de passeio baseado em dados naturalísticos

Autores

  • Eduardo Cesar Amancio Institute for Research and Urban Planning of Curitiba, Curitiba, Paraná – Brazil / Curitiba University of Technology, Curitiba, Paraná – Brazil https://orcid.org/0000-0002-7957-4976
  • Gabriele Tres Federal University of Paraná, Curitiba, Paraná – Brazil
  • Manoela Branco Ehlke Silva Federal University of Paraná, Curitiba, Paraná – Brazil
  • Paulo Roberto Guimarães Junior National Observatory for Road Safety, São José dos Campos, São Paulo – Brazil
  • Jorge Tiago Bastos Federal University of Paraná, Curitiba, Paraná – Brazil https://orcid.org/0000-0001-6447-1504

DOI:

https://doi.org/10.58922/transportes.v31i2.2832

Palavras-chave:

Vertical deflection, Speed profile, Naturalistic Driving Study, Traffic Calming

Resumo

A implementação de lombadas e faixas de pedestres elevadas tem sido uma estratégia popular de gerenciamento de velocidade amplamente utilizada no Brasil. Apesar da redução de velocidade imposta por tais medidas, pouco se sabe sobre a magnitude dessa redução ou mesmo sobre as velocidades praticadas nos trechos antes, durante e após a passagem pelo dispositivo. O objetivo deste trabalho foi avaliar o impacto de lombadas e faixas de pedestre elevadas na velocidade praticada de veículos de passeio. A metodologia incluiu (i) o mapeamento de lombadas e faixas de pedestre elevadas em vias estruturais, prioritárias e setoriais 1 e 2 do sistema viário de Curitiba (PR); (ii) coleta e processamento de dados naturalísticos de velocidade instantânea de uma amostra de condutores; (iii) elaboração de perfis de velocidade nos segmentos antes, durante e após a passagem pelos dispositivos; (iv) aplicação de critérios de exclusão de viagens da amostra por fatores de interferência; e (v) análise estatística. Os segmentos antes, durante e depois foram definidos como três faixas de análise de velocidade (FAV): 1, 2 e 3, respectivamente. A velocidade média na FAV 2 foi da mesma magnitude que para lombadas e faixas de pedestre elevadas (26 km/h), assim como para a variação de velocidade entre a FAV 1 e 2 – uma redução de cerca de 43%. A velocidade na FAV 1 foi maior nas vias estruturais. Maiores reduções de velocidade entre FAV 1 e 2 foram encontradas para vias com maior hierarquia. Não houve diferenças estatisticamente significativas entre os dois dispositivos para distâncias de conformidade de velocidade menores ou iguais a 30 km/h ou 40 km/h, embora a distância média tenha sido 15,41% maior para 30 km/h e 5,57% maior para 40 km/h h no caso de faixas de pedestre elevadas. Em termos de planejamento urbano, tais informações podem subsidiar melhor as decisões sobre a implantação e posicionamento do dispositivo de gerenciamento de velocidade.

 

Downloads

Não há dados estatísticos.

Referências

ANDS (2017) ANDS Progress Report for May 2017. Available at: <http://www.ands.unsw.edu.au/news-events/andsprogress-report-may-201700000> (accessed 09/13/2022).

Badiger, A., Kuldeep, M. R. A. and Anjaneyappa, V. (2022) Effectiveness of speed calming measures along arterial roads. Recent Advances in Transportation Systems Engineering and Managament (Lecture Notes in Civil Engineering, No. 261). Switzerland: Springer Nature. DOI: https://doi.org/10.1007/978-981-19-2273-2_45

Barbosa, H. M. (2006) Almofadas: uma alternativa ao amplo uso de ondulações transversais. Revista dos Transportes Públicos, v. 28, p. 49-64.

Barbosa, H. M. and M. V. Moura (2008a) O potencial de plataformas para o controle de velocidade nas suas imediações em vias urbanas. Revista dos Transportes Públicos, v. 30, p. 90-115.

Barbosa, H. M. and M. V. Moura (2008b) Ondulações transversais para controle de velocidade veicular. In Anais da ANPET. Belo Horizonte: Núcleo de Transportes, Escola de Engenharia Universidade Federal de Minas Gerais.

Barbosa, H. M.; M. T. Tight and A. D. May (2000) A model of speed profiles for traffic calmed roads. Transportation Research Part A: Policy and Practice, v. 34, n. 2, p. 103-23. DOI: 10.1016/S0965-8564(98)00067-6. DOI: https://doi.org/10.1016/S0965-8564(98)00067-6

Bastos, J. T.; P. A. B. Santos; E. C. Amancio et al. (2020) Naturalistic driving study in Brazil: an analysis of mobile phone use behavior while driving. International Journal of Environmental Research and Public Health, v. 17, n. 17, p. 1-14. DOI: 10.3390/ijerph17176412. PMid:32899144. DOI: https://doi.org/10.3390/ijerph17176412

Bastos, J. T.; P. A. B. Santos; E. C. Amancio et al. (2021) Is organized carpooling safer? Speeding and distracted driving behaviors from a naturalistic driving study in Brazil. Accident; Analysis and Prevention, v. 152, p. 105992. DOI: 10.1016/j.aap.2021.105992. PMid:33549972. DOI: https://doi.org/10.1016/j.aap.2021.105992

Brasil (2006) Resolution no. 600, May 24th, 2006. Standards and criteria for installing speed bumps on public roads. Diário Oficial da República Federativa do Brasil. Brasília.

Brasil (2018). Resolution no. 738, September 6th, 2018. Standards and criteria for installing raised crossings on public roads. Diário Oficial da República Federativa do Brasil. Brasília.

Candappa, N.; K. Stephan; N. Fotheringham et al. (2014) Raised crosswalks on entrance to the roundabout – a case study on effectiveness of treatment on pedestrian safety and convenience. Traffic Injury Prevention, v. 15, n. 6, p. 631-9. DOI: 10.1080/15389588.2013.854885. PMid:24867573. DOI: https://doi.org/10.1080/15389588.2013.854885

Chandra, S.; M.R. Begum and C.R. Sekhar (2022) Optimum design of speed hump based on empirical data. Proceedings of the Institution of Civil Engineers – Transport, v. 175, n. 7, p. 426-34. DOI: 10.1680/jtran.19.00141. DOI: https://doi.org/10.1680/jtran.19.00141

CNDS (2021) Canada Naturalistic Driving Study (CNDS). Available at: <https://www.canada-nds.net/index.html> (accessed 09/13/2022).

Cupolillo, M. T. (2006) Estudo das Medidas Moderadoras do Tráfego para Controle da Velocidade e dos Conflitos em Travessias Urbanas. Dissertação (mestrado). Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ. Available at: <https://minerva.ufrj.br/F/?func=direct&doc_number=000662515&local_base=UFR01> (accessed 09/13/2022).

Curitiba (2019) Law nº 15511, October 10th, 2019. Zoneamento, uso e ocupação do solo no município de Curitiba e dá outras providências. Diário Oficial.

Elvik, R.; T. Vaa; A. Hoye et al. (2009) The Handbook of Road Safety Measures. Bingley: Emerald Group Publishing. 1140 p. DOI: 10.1108/9781848552517. DOI: https://doi.org/10.1108/9781848552517

Empresa de Transporte e Trânsito de Belo Horizonte - BHTrans (1999) Manual de Medidas Moderadoras de Tráfego. Belo Horizonte.

Gitelman, V.; R. Carmel; F. Pesahov et al. (2016) Changes in road-user behaviors following the installation of raised pedestrian crosswalk combined with preceding speed humps, on urban arterials. Transportation Research Part F: Traffic Psychology and Behaviour. DOI: https://doi.org/10.1016/j.trf.2016.07.007

Gonzalo-Orden, H.; H. Pérez-Acebo; A.L. Unamunzaga et al. (2018) Effects of traffic calming measures in different urban areas. Transportation Research Procedia, v. 33, p. 83-90. DOI: 10.1016/j.trpro.2018.10.079. DOI: https://doi.org/10.1016/j.trpro.2018.10.079

Google Earth. (2021). Available at: <http://earth.google.com/> (accessed 09/13/2022).

Gyaase, D.; S. Newton; C.A. Adams et al. (2023) Effect of speed humps on injury consequences on trunk roads traversing towns in Ghana: a quasi-experimental study. Injury Prevention, v. 29, n. 1, p. 68-73. PMid:36163153. DOI: https://doi.org/10.1136/ip-2022-044598

Handayani, D.; R. Purnomoasri; Syafi’ et al. (2020). Analysis of car speed reduction due to concrete speed bumps on local roads in Surakarta city. Earth and Environmental Science, v. 426, p. 012052. DOI: https://doi.org/10.1088/1755-1315/426/1/012052

Huang, J.; P. Liu; X. Zhang et al. (2011). Evaluating the speed reduction effectiveness of speed bump on local streets. In 11th International Conference of Chinese Transportation Professionals (ICCTP). ASCE. DOI: 10.1061/41186(421)234. DOI: https://doi.org/10.1061/41186(421)234

IPPUC (2015) Sistema Viário Classificado. Available at: https://ippuc.org.br/geodownloads/geo.htm> (accessed 09/13/2022).

Jateikiené, L.; T. Andriejauskas; I. Lingyté et al. (2016) Impact assessment of speed calming measures on road safety. Transportation Research Procedia, v. 14, p. 4228-36. DOI: 10.1016/j.trpro.2016.05.394. DOI: https://doi.org/10.1016/j.trpro.2016.05.394

Kiran, K.R.; M. Kumar and B. Abhinay (2020) Critical analysis of speed hump and speed bump and geometric design of curved speed hump. Transportation Research Procedia, v. 48, p. 1211-26. DOI: 10.1016/j.trpro.2020.08.144. DOI: https://doi.org/10.1016/j.trpro.2020.08.144

Larue, G.S.; S. Demmel; S.G. Dehkordi et al. (2018) Australian Naturalistic Driving Study (ANDS): using 20,000 trips to get a glimpse at locations and speeds where data was collected. In 2018 Australasian Road Safety Conference. Available at: <https://eprints.qut.edu.au/122207/> (accessed 09/13/2022).

Lockwood, I. (1997) ITE traffic calming definition. ITE Journal, v. 67, n. 7, p. 22-24.

Marshall, S.C.; K.G. Wilson; M. Man-Son-Hing et al. (2013) The Canadian safe driving study—phase I pilot: examining potential logistical barriers to the full cohort study. Accident; Analysis and Prevention, v. 61, n. 3, p. 236-44. DOI: 10.1016/j.aap.2013.04.002. PMid:23672943. DOI: https://doi.org/10.1016/j.aap.2013.04.002

Neale, V.L.; T.A. Dingus; S.G. Klauer et al. (2005) An Overview of the 100-car Naturalistic Driving Study and Findings. Available at: <https://dot.alaska.gov/highwaysafety/assets/Occ_Prot-cellphone_National_studyVirginia_Tech_Transp_Institute.pdf> (accessed 09/13/2022).

Njord, J. and K. Steudle (2015) Big Data Hit the Road: the First Year of Use of the SHRP 2 Safety Databases. Available at: <http://onlinepubs.trb.org/onlinepubs/trnews/trnews300BigData.pdf> (accessed 09/13/2022).

Pau, M. and S. Angius (2001) Do Speed Bumps Really Decrease Traffic Speed: an Italian Experience. Piazza d'Armi: Department of Territorial Engineering, Transportation Section, University of Cagliari. DOI: https://doi.org/10.1016/S0001-4575(00)00070-1

Pérez-Acebo, H.; R. Ziólkowski; A. Linares-Unamunzaga et al.(2020) A series of vertical deflections, a promising traffic calming measure: analysis and recommendations for spacing. Applied Sciences, v. 10, p. 3368. DOI: 10.3390/app10103368. DOI: https://doi.org/10.3390/app10103368

Purnomo, R.D; D. Handayani and Syafi’i (2018) Correlation analysis between speed bump dimensions and motorcycle speed in residential areas.. MATEC Web Conferences, v. 195, p. 04013. DOI: 10.1051/matecconf/201819504013. DOI: https://doi.org/10.1051/matecconf/201819504013

QGIS Development Team (2021). QGIS Geographic Information System. Open Source Geospatial Foundation Project. Available at: <http://qgis.osgeo.org> (accessed 09/13/2022).

Rokade, S.; R. Kumar; V. Rokade et al. (2017) Assessment of effectiveness of vertical deflection type traffic calming measures and development of speed prediction models in urban perspective. International Journal of Civil Engineering and Technology, v. 8, n. 5, p. 1135-46.

Sheykhfard, A.; F. Haghighi; E. Papadimitriou et al. (2021) Analysis of the occurrence and severity of vehiclepedestrian conflicts in marked and unmarked crosswalks through naturalistic driving study. Transportation Research Part F: Traffic Psychology and Behaviour, v. 76, p. 178-92. DOI: 10.1016/j.trf.2020.11.008. DOI: https://doi.org/10.1016/j.trf.2020.11.008

Torres, C.; L. Sobreira; M. Castro-Neto et al. (2020) Evaluation of pedestrian behavior on mid-block crosswalks: a case study in Fortaleza – Brazil, Frontiers in Sustainable Cities., v. 2, n. 3, p. 3. http://dx.doi.org/10.3389/frsc.2020.00003. DOI: https://doi.org/10.3389/frsc.2020.00003

Uchida, N.; M. Kawakoshi; T. Tagawa et al. (2010) An investigation of factors contributing to major crash types in Japan based on naturalistic driving data. IATSS Research, v. 34, n. 1, p. 22-30. DOI: 10.1016/j.iatssr.2010.07.002. DOI: https://doi.org/10.1016/j.iatssr.2010.07.002

van Nes, N.; J. Bärgman; M. Christoph et al. (2019) The potential of naturalistic driving for in-depth understanding of driver behavior: UDRIVE results and beyond. Safety Science, v. 119, p. 11-20. DOI: 10.1016/j.ssci.2018.12.029. DOI: https://doi.org/10.1016/j.ssci.2018.12.029

Vieira, H.; J. T. Bastos; K. R. Camargo et al. (2007). Tratamento pontual visando à acessibilidade a pólos geradores de viagem através da moderação de tráfego: um estudo de caso. Teoria e Prática na Engenharia Civil, n. 10, p. 11-8.

Wang, C.; Z. Ye; X. Wang et al.(2017) Effects of speed-control measures on the safety of unsignalized midblock street crossing in China. Traffic Injury Prevention, v. 18, n. 7, p. 774-9. DOI: 10.1080/15389588.2017.1287908. PMid:28436734. DOI: https://doi.org/10.1080/15389588.2017.1287908

WHO (2012) Speed Management: a Road Safety Manual for Decision-Makers and Practitioners. Brasília, D.F.: OPAS,.

Zhu, M.; X. Wang; A. Tarko et al. (2018) Modeling car-following behavior on urban expressways in Shanghai: A naturalistic driving study. Transportation Research Part C, Emerging Technologies, v. 93, p. 425-45. DOI: 10.1016/j.trc.2018.06.009. DOI: https://doi.org/10.1016/j.trc.2018.06.009

Downloads

Publicado

10-05-2023

Como Citar

Amancio, E. C., Tres, G. ., Branco Ehlke Silva, M., Roberto Guimarães Junior, P., & Tiago Bastos, J. (2023). Impacto de lombadas e travessias elevadas na velocidade de veículos de passeio baseado em dados naturalísticos. TRANSPORTES, 31(2), e2832. https://doi.org/10.58922/transportes.v31i2.2832

Edição

Seção

Artigos