Avaliação de técnicas de balanceamento de bases de dados para classificação da severidade de acidentes rodoviários empregando redes neurais artificiais
DOI:
https://doi.org/10.14295/transportes.v28i5.2271Palavras-chave:
Dados desbalanceados. Severidade do acidente. Classificação e Redes Neurais Artificiais.Resumo
Uma característica inerente aos bancos de dados de acidentes rodoviários refere-se ao desequilíbrio existente entre o número de observações associadas às ocorrências dos acidentes com vítimas fatais e não fatais, em relação aos acidentes sem vítimas. Essa particularidade conduz à necessidade da aplicação de técnicas de balanceamento, que possibilitam a reamostragem de classes e atributos. Assim, assegura-se que não haja um super ajuste dos dados em problemas de classificação. Este trabalho investigou a influência de diferentes métodos de balanceamento como undersampling, oversampling e SMOTE no processo de classificação da severidade de acidentes rodoviários pela abordagem de Redes Neurais Artificiais. Os resultados obtidos indicam que o balanceamento proporciona um ganho significativo na taxa de acerto da classificação das classes minoritárias. Verifica-se um melhor ajuste do classificador ao modelo e o ganho na qualidade e acurácia do processo de classificação, principalmente, quando são utilizadas técnicas de sobre amostragem como a SMOTE.Downloads
Referências
Alejo, R.; Valdovinos, R. M. García, V. e J. H. Pacheco-Sanchez (2013) A hybrid method to face class overlap and class imbalance on neural networks and multi-class scenarios. Pattern Recognition Letters, v. 34, n. 4, p. 380–388. DOI: 10.1016/j.patrec.2012.09.003
Bolón-Canedo, V.; Sánchez-Maroño, N.; Alonso-Betanzos, A.; Benítez, J. M. e F. Herrera (2014) A review of microarray datasets and applied feature selection methods. Information Sciences, v. 282, p. 111–135. DOI: 10.1016/j.ins.2014.05.042
Chang, L-Y (2005) Analysis of freeway accident frequencies: Negative binomial regression versus artificial neural network. Safety Science, v. 43, p. 541-557. DOI: 10.1016/j.ssci.2005.04.004
Chang, L. e H. Wang (2006) Analysis of traffic injury severity: An application of non-parametric classification tree techniques. Accident Analysis & Prevention, v. 38, p. 1019–1027. DOI: 10.1016/j.aap.2006.04.009
Chen, C.; Zhang, G.; Qian, Z.; Tarefder, R. A. e Z. Tian (2016) Investigating driver injury severity patterns in rollover crashes using support vector machine models. Accident Analysis & Prevention, v. 90, p. 128–139. DOI: 10.1016/j.aap.2016.02.011
Delen, D.; Sharda, R. e M. Bessonov (2006) Identifying significant predictors of injury severity in traffic accidents using a series of artificial neural networks. Accident Analysis & Prevention, v. 38, p. 434–444. DOI: 10.1016/j.aap.2005.06.024
Facelli, K.; Lorena, A. C.; Gama, J. e A. C. P. L. F, Carvalho (2011). Inteligência Artificial: Uma abordagem de aprendizado de máqui-na. Rio de Janeiro: LTC. 378p.
Fawcett, T. (2016) Learning from Imbalanced Classes. Available in: https://www.svds.com/learning-imbalanced-classes/. Access: November/2018.
Fouladgar, M.; Parchami, M.; Elmasri, R. e A. Ghaderi (2017) Scalable Deep Traffic Flow Neural Networks for Urban Traffic Congestion Prediction. International Joint Conference on Neural Networks (IJCNN), p. 2251–2258. DOI: 10.1109/IJCNN.2017.7966128
Hosmer, D.W. e S. Lemeshow (2000) Applied logistic regression, 2nd Ed. John Wiley & Sons, New York.
Krawczyk, B. (2016) Learning from imbalanced data: open challenges and future directions. Progress in Artificial Intelligence, v. 5, n. 4, p. 221–232. DOI: 10.1007/s13748-016-0094-0
Li, J.; Fong, S.; Wong, R. K.; Mohammed, S.; Fiaidhi, J. e Y. Sung (2018) A suite of swarm dynamic multi-objective algorithms for rebalancing extremely imbalanced datasets. Applied Soft Computing Journal, p. 1–22. DOI: 10.1016/j.asoc.2017.11.028
Mussone, L.; Ferrari, A. e M. Oneta (1999) An analysis of urban collisions using an artificial intelligence model. Accident Analysis & Prevention, 31, v. 31, p. 705–718. DOI: 10.1016/S0001-4575(99)00031-7
Prati, R. C.; Batista, G. E. A. P. A. e M. C. Monard (2008) Curvas ROC para avaliação de classificadores [Internet]. IEEE Latin America Transactions. 2008; 6 (2): 215-222.Available from: http://ieeexplore.ieee.org/stamp/stamp.do?arnumber=4609920&isnumber=4609907
Salunkhe, U. R. e S. N. Mali (2016) Classifier Ensemble Design for Imbalanced Data Classification: A Hybrid Approach. Interna-tional Conference on Computational Modeling and Security (CMS 2016), v. 85, n. Cms, p. 725–732. DOI: 10.1016/j.procs.2016.05.259
Wang, C.; Qiu, C.; Zuo, X. e C. Liu (2014) An Accident Severity Classification Model Based on Multi-Objective Particle Swarm Optimization. IEICE Trans. Inf. & Syst., n. 11, p. 2863–2871 DOI: 10.1587/transinf.2014EDP7069
Yuan, J., Abdel-Aty, M., Gong, Y. e Q. Cai (2019). Real-time crash risk prediction using long short-term memory recurrent neu-ral network. Transportation research record, 2673(4), 314-326. DOI: 10.1177/0361198119840611
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Ao submeter um manuscrito para publicação neste periódico, todos os seus autores concordam, antecipada e irrestritamente, com os seguintes termos:
- Os autores mantém os direitos autorais e concedem à Revista TRANSPORTES o direito de primeira publicação do manuscrito, sem nenhum ônus financeiro, e abrem mão de qualquer outra remuneração pela sua publicação pela ANPET.
- Ao ser submetido à Revista TRANSPORTES, o manuscrito fica automaticamente licenciado sob a Licença Creative Commons Attribution, que permite o compartilhamento do trabalho com reconhecimento da autoria e da publicação inicial neste periódico.
- Os autores têm autorização para assumir contratos adicionais separadamente, para distribuição não exclusiva da versão do trabalho publicada neste periódico (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento da publicação inicial nesta revista, desde que tal contrato não implique num endosso do conteúdo do manuscrito ou do novo veículo pela ANPET.
- Os autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) depois de concluído o processo editorial. Como a Revista TRANSPORTES é de acesso livre, os autores são estimulados a usar links para o site da Revista TRANSPORTES nesses casos.
- Os autores garantem ter obtido a devida autorização dos seus empregadores para a transferência dos direitos nos termos deste acordo, caso esses empregadores possuam algum direito autoral sobre o manuscrito. Além disso, os autores assumem toda e qualquer responsabilidade sobre possíveis infrações ao direito autoral desses empregadores, isentando a ANPET e a Revista TRANSPORTES de toda e qualquer responsabilidade neste sentido.
- Os autores assumem toda responsabilidade sobre o conteúdo do trabalho, incluindo as devidas e necessárias autorizações para divulgação de dados coletados e resultados obtidos, isentando a ANPET e a Revista TRANSPORTES de toda e qualquer responsabilidade neste sentido.