Uma estratégia para avaliação da resiliência na mobilidade urbana

Marcel Carlos da Mata Martins, Antônio Nélson Rodrigues da Silva

Resumo


O objetivo deste estudo é desenvolver uma estratégia de avaliação da resiliência da mobilidade urbana, baseada na suposição de que modos motorizados não estariam disponíveis. Portanto, apenas os modos a pé e bicicleta foram considerados para este exercício teórico. As viagens foram inicialmente classificadas em dois grupos, de acordo com sua adaptabilidade ou transformabilidade, sendo as do primeiro grupo consideradas resilientes. Uma terceira categoria teve que ser introduzida para representar outro conjunto de viagens resilientes. Estas são as viagens excepcionais, isto é, viagens a pé ou de bicicleta que são mais longas do que as Distâncias Máximas Possíveis (DMP) definidas para avaliação da resiliência. O cenário mais pessimista (0 km) mostrou uma resiliência de 40,4%, e a resiliência máxima (100%) foi atingida com 12,5 km. Foi possível então, ajustar uma curva teórica para representar a variação da resiliência. Os resultados também revelaram um padrão para cada segmento de resiliência devido à forma da cidade


Palavras-chave


Resiliência; Mobilidade Urbana; Veículos Motorizados; Modos Ativos; Combustíveis Fósseis.

Texto completo:

PDF

Referências


Bohannon, R.W. (1997) Comfortable and maximum walking speed of adults aged 20-79 years: reference values and deter-minants. Age and Ageing, v. 26, p. 15-19. DOI: 10.1093/ageing/26.1.15.

Brunner, A. (2013) The effects of urban sprawl on daily life: Smart growth implementation of Atlantic Stations. Transporta-tion Research Board 92nd Annual Meeting. Washington, DC. Disponível em: . (Acesso em: 22/01/2017)

Buehler, R.; J. Pucher; D. Merom e A. Bauman (2011) Active travel in Germany and the U.S. contributions of daily walking and cycling to physical activity. American Journal of Preventive Medicine, v. 41, n. 3, p. 241-250. DOI: 10.1016/j.amepre.2011.04.012

Dantas, A.; S. Page e S. Krumdieck (2010) Urban form and long-term fuel supply decline: A method to investigate the peak oil risks to essential activities. Transportation Research, Part A, n. 44, p. 306-322. DOI: 10.1016/j.tra.2010.02.002

Exner, A.; E. Politti; E. Schriefl; S. Erker; R. Stangl; S. Baud; H. Warmuth; J. Matzenberger; L. Kranzl; R. Paulesich; M. Windha-ber; S. Supper e G. Stöglehner (2016) Measuring regional resilience towards fossil fuel supply constraints. Adaptability and vulnerability in socio-ecological transformations: The case of Austria. Energy Policy, v. 91, p. 128-137. DOI: 10.1016/j.enpol.2015.12.031

Fernandes, V. A.; R. Rothfuss; V. Hochschild; W. R da Silva e M. P. S. Santos (2015) Resiliência da mobilidade urbana: Uma proposta conceitual. Anais do XXIX Congresso Nacional de Pesquisa em Transporte da ANPET. Ouro Preto, MG, Brasil, p. 2759-2770. Disponível em: . (Acesso em 01/10/2016)

Fernandes, V. A.; R. Rothfuss; V. Hochschild; W. R. Silva e M. P. S. Santos (2017) Resiliência da mobilidade urbana: Uma pro-posta conceitual e de sistematização. Revista Transportes, v. 25, n. 4, p. 147-160. DOI: 10.14295/transportes.v25i4.1079

Folke, C.; S. R. Carpender; B. Walker; M. Scheffer; T. Chapin e J. Rochström (2010) Resilience thinking: integrating resilience, adaptability and transformability. Ecology & Society, v. 15, n. 4. Disponível em: . (Acesso em 12/02/2017)

Hamidi, S. e R. Ewing (2015) Is sprawl affordable for Americans? Exploring the association between sprawl and housing + transportation affordability. Transportation Research Board 94th Annual Meeting, Washington, DC. DOI: 10.3141/2500-09

Horning, J.; A. El-Geneidy e K. J. Krizek (2007) Perceptions of walking distance to neighbourhood retail and other public services. Transportation Research at McGill. Disponível em: . (Acesso em 10/03/2017)

Hubbert, M. K. (1949) Energy from Fossil Fuels. Science, New Series, v. 109, n. 2823, p. 103-109. Disponível em: . (Acesso 22/01/2017)

Hydén, C.; A. Nilsson e R. Risser (1999) How to enhance walking and cycling instead of shorter car trips and to make these modes safer. Department of Traffic Planning and Engineering. Disponível em: . (Acesso 22/01/2017)

Larsen, J.; A. El-Geneid, e F. Yasmin (2010) Beyond the quarter mile: Re-examining travel distances by active transportation. Canadian Journal of Urban Research: Canadian Planning and Policy (supplement), v. 19, n. 1, p. 70-88. Disponível em: . (Acesso 03/02/2017)

Lovelace, R. e I. Philips (2014) The “oil vulnerability” of commuter patterns: A case study from Yorkshire and the Humber, UK. Geoforum, v.51, p. 169-182. DOI: 10.1016/j.geoforum.2013.11.005

McCormack G. R.; E. Cerin; E. Leslie; L. Du Toit e N. Owen (2008) Objective versus perceived walking distances to destina-tions. Environment and Behavior, v. 40, n. 3. DOI: 10.1177/0013916507300560

Moudon, A. V.; C. Lee; A. D. Cheadle; G. Cheza; D. Johnson; T. L. Schmid; R. D. Weathers e L. Lin (2006) Operational definitions of walkable neighbourhood: theoretical and empirical insights. Journal of Physical Activity and Health, v. 3, n. 1, p. 99-117. DOI: 10.1123/jpah.3.s1.s99

Newman, P. e J. Kenworthy (2011) ‘Peak Car Use’: Understanding the demise of automobile dependence. World Transport Policy and Practice, v. 17, n. 2, p. 31-42. Disponível em: . (Acesso 22/01/2017)

Oliveira, A.; F. Tan e A. N. Rodrigues da Silva (2016) Adequação do modo de transporte: um indicador de mobilidade susten-tável em campus universitário. Anais do XXX Congresso Nacional de Pesquisa em Transporte da ANPET. Rio Janeiro, RJ, Bra-sil, p. 2703-2709. Disponível em: . (Acesso 10/03/2017)

Philips, I. (2014) The potential role of walking and cycling to increase resilience of transport systems to future external shocks. Tese (Doutorado em Filosofia). University of Leeds Institute for Transport Studies. Leeds, UK. Disponível em: . (Acesso 22/01/2017)

Rendall, S.; S. Page; F. Reitsma; E. Van Houten e S. Krumdieck (2011) Quantifying transport energy resilience: Active mode accessibility. Transportation Research Record: Journal of the Transportation Research Board, n. 2242, p. 72-80. DOI: 10.3141/2242-09

Rodrigues da Silva, A. N.; G. C. F. Costa e N. C. M. Brondino (2007) Urban sprawl and energy use for transportation in the largest Brazilian cities. Energy for Sustainable Development, v. 11, n. 3, p. 44-50. DOI: 10.1016/S0973-0826(08)60576-1

Saunders, M. J. e A. N. Rodrigues da Silva (2009) Reducing urban transport energy dependence: A new urban development framework and GIS-based tool. International Journal of Sustainable Transportation, v. 3, n. 2, p. 71-87. DOI: 10.1080/1556831070164803.

Schwanen, T. (2016) Rethinking resilience as capacity to endure. City, v. 20, n. 1, p. 152-160. DOI: 10.1080/13604813.2015.1125718

Shim, G. E.; S. M. Rhee; K. H. Ahn e S. B. Chung (2006). The relationship between the characteristics of transportation energy consumption and urban form. The Annals of Regional Science, v. 40, n. 2, p. 351-367. DOI: 10.1007/s00168-005-0051-5

Walker J. e M. Cooper (2011) Genealogies of resilience: From systems ecology to the political economy of crisis adaptation. Security Dialogue, v. 42, n. 2, p. 143-160. DOI: 10.1177/0967010611399616

Yang, Y. e A. V. Diez-Roux (2012) Walking distance by trip purpose and population subgroups. American Journal of Preventive Medicine, v. 43, n. 1, p. 11-19. DOI: 10.1016/j.amepre.2012.03.015

Zhang, W. e K. M. Kockelman (2014) Urban sprawl, job decentralization, and congestion: the welfare effects of congestion tolls and urban growth boundaries. Transportation Research Board 93rd Annual Meeting. Washington, DC. Disponível em: . (Acesso 03/02/2017)




DOI: https://doi.org/10.14295/transportes.v26i3.1625

Métricas do artigo

Carregando Métricas ...

Metrics powered by PLOS ALM


Direitos autorais 2018 Marcel Carlos da Mata Martins, Antônio Nélson Rodrigues da Silva

Licença Creative Commons
Esta obra está licenciada sob uma licença Creative Commons Atribuição 4.0 Internacional.

TRANSPORTES (ISSN: 2237-1346) é uma publicação da ANPET - Associação Nacional de Pesquisa e Ensino em Transportes (www.anpet.org.br)