Prevalência de fatores associados à severidade dos acidentes em entorno de escolas

Autores

  • Tânia Batistela Torres Laboratório de Sistemas de Transportes – LASTRAN Programa de Pós-graduação em Engenharia de Produção – PPGEP Universidade Federal do Rio Grande do Sul - UFRGS http://orcid.org/0000-0002-1467-2882
  • Ana Margarita Larranaga Uriarte Laboratório de Sistemas de Transportes – LASTRAN Programa de Pós-graduação em Engenharia de Produção – PPGEP Universidade Federal do Rio Grande do Sul - UFRGS
  • Cristhiane Paludo Demore Laboratório de Sistemas de Transportes – LASTRAN Programa de Pós-graduação em Engenharia de Produção – PPGEP Universidade Federal do Rio Grande do Sul - UFRGS
  • Christine Tessele Nodari Laboratório de Sistemas de Transportes – LASTRAN Programa de Pós-graduação em Engenharia de Produção – PPGEP Universidade Federal do Rio Grande do Sul - UFRGS

DOI:

https://doi.org/10.14295/transportes.v25i3.1331

Palavras-chave:

Estrutura urbana, Escola, Logit Ordenado, Logit multinomial, Segurança viária.

Resumo

Promover a segurança viária nos entornos escolares é uma estratégia que contribui para que sejam construídas cidades seguras, saudáveis e sustentáveis. Este estudo é dedicado a identificar o conjunto de características físicas urbanas capazes de reduzir a severidade dos acidentes nesses entornos. A severidade foi analisada a partir das características da estrutura urbana, socioeconômicas, da instituição escolar e dos acidentes registrados (entre 2012 e 2014) no entorno de 905 escolas de Porto Alegre. Foram estimados modelos de escolha discreta ordenados e não ordenados, permitindo a comparação entre as abordagens. Entretanto, não foi identificada superioridade de uma abordagem metodológica sobre a outra. O conjunto de estimativas indica que a severidade dos acidentes no entorno escolar é influenciada por características da escola, do acidente, socioeconômicas e pela estrutura urbana, com destaque para influência negativa do número de interseções com quatro vias.7

 

 

Downloads

Não há dados estatísticos.

Biografia do Autor

Tânia Batistela Torres, Laboratório de Sistemas de Transportes – LASTRAN Programa de Pós-graduação em Engenharia de Produção – PPGEP Universidade Federal do Rio Grande do Sul - UFRGS

Possui graduação em Engenharia Civil (2013) pela Universidade Federal do Rio Grande do Sul (UFRGS) e mestrado acadêmico em Engenharia de Produção (2016) pela Universidade Federal do Rio Grande do Sul (UFRGS). Atua, principalmente, nos temas: análise e modelagem da segurança viária, engenharia de tráfego e mobilidade.

Ana Margarita Larranaga Uriarte, Laboratório de Sistemas de Transportes – LASTRAN Programa de Pós-graduação em Engenharia de Produção – PPGEP Universidade Federal do Rio Grande do Sul - UFRGS

Possui graduação em Engenharia Civil pela Universidade de la Republica do Uruguai (2001), especialização em Finanças e Economia pela Universidade Federal do Rio Grande do Sul (2007), mestrado em Engenharia de Produção pela Universidade Federal do Rio Grande do Sul (2008) e doutorado em Engenharia de Produção pela Universidade Federal do Rio Grande do Sul (2012). Atua principalmente nos seguintes temas: estudos de transporte, modelos de escolha discreta, modelos de variável latente, estimação da demanda, pedestres e mobilidade.

Cristhiane Paludo Demore, Laboratório de Sistemas de Transportes – LASTRAN Programa de Pós-graduação em Engenharia de Produção – PPGEP Universidade Federal do Rio Grande do Sul - UFRGS

Estuda Engenharia Civil na Universidade Federal do Rio Grande do Sul.

Christine Tessele Nodari, Laboratório de Sistemas de Transportes – LASTRAN Programa de Pós-graduação em Engenharia de Produção – PPGEP Universidade Federal do Rio Grande do Sul - UFRGS

Possui graduação em Engenharia Civil pela Universidade Federal do Rio Grande do Sul (1992), mestrado em (1996) e doutorado em Engenharia de Produção pela Universidade Federal do Rio Grande do Sul (2003) com periodo de estudos (doutorado sandwich) na University of British Columbia em Vancouver, Canadá. Atualmente é professora 3 grau da Universidade Federal do Rio Grande do Sul. Tem experiência na área de Engenharia de Transportes, com ênfase em Segurança Viária, atuando principalmente nos seguintes temas: gerenciamento segurança viaria e transporte público.

Referências

Abay, K. A. (2013) Examining pedestrian-injury severity using alternative disaggregate models. Research in Transportation Economics, v. 43, n. 1, p. 123-136. DOI: 10.1016/j.retrec.2012.12.002

Abdel-Aty, M.; S. Srinivas e C. Lee (2007) Geo-spatial and log-linear analysis of pedestrian and bicyclist crashes involving school-aged children. Journal of Safety Research, v. 38, p. 571–579. DOI: 10.1016/j.jsr.2007.04.006

Akaike H. (1992) Information Theory and an Extension of the Maximum Likelihood Principle. In: Kotz S. e N. L. Johnson (eds) Breakthroughs in Statistics. Springer Series in Statistics (Perspectives in Statistics). Springer, New York, NY. DOI: 10.1007/978-1-4612-0919-5_38

Andreou, M. (2010) Planning for Pedestrian Safety around Schools. 96 f. Trabalho de Diplomação. (Faculty of the Built Envi-ronment), University of New South Wales, Sydney, Austrália. 2010.

Ben-Akiva, M. e S. Lerman (1985) Discrete Choice Modeling: Theory and Applications to Travel Demand. MIT Press. Massa-chusetts. ISBN 0-262-02217-6

Bierlaire, M. (2003). Biogeme: A free package for the estimation of discrete choice models, Proceedings of the 3rd Swiss Trans-portation Research Conference, Ascona, Switzerland.

Billingsley, S.; A. Silverman; M. Adhikari; R. Clarke e M. Cutler (2015) Goals for change, partners for action goals for action. Fia Foundation, Annual Report 2015. Obtido de: <https://www.fiafoundation.org/media/203498/fiaf-annual-report-2015-spreads.pdf>. Acesso em 9 de julho de 2017.

Cervero, R. e K. Kockelman (1997) Travel demand and the 3Ds : density, design, diversity. Transportation Research Part C: Emerging Technologies, v. 2, n. 3, p. 199-219. DOI: 10.1016/S1361-9209(97)00009-6

Cervero, R; O. L. Sarmiento; E. Jacoby; L. F. Gomez e A. Neiman (2009) Influences of Built Environments on Walking and Cy-cling: Lessons from Bogotá. International Journal of Sustainable Transportation, v. 3, n. 4, p. 203-226. DOI: 10.1080/15568310802178314

Chen, P. e Q. Shen (2016) Built environment effects on cyclist injury severity in automobile-involved bicycle crashes. Accident Analysis and Prevention, v. 86, p. 239-246. DOI: 10.1016/j.aap.2015.11.002

Clifton, K. J. e K. Kreamer-Fults (2007) An examination of the environmental attributes associated with pedestrian-vehicular crashes near public schools. Accident Analysis and Prevention, v. 39, n. 4, p. 708–715.

Curtis, C.; C. Babb e D. Olaru (2015) Built environment and children’s travel to school. Transport Policy, v. 42, p. 21-33. DOI: 10.1016/j.tranpol.2015.04.003

DATASUS (2016) Obtido de: <http://tabnet.datasus.gov.br/cgi/deftohtm.exe?sim/cnv/> Acesso em 24/05/2016.

Eluru, N.; C. R. Bhat C. R. e D. A. Hensher (2008) A mixed generalized ordered response model for examining pedestrian and bicyclist injury severity level in traffic crashes. Accident Analysis and Prevention, v. 40, n. 3, p. 1033–1054. DOI:10.1016/j.aap.2007.11.010

Eluru, N. (2013) Evaluating alternate discrete choice frameworks for modeling ordinal discrete variables. Accident Analysis and Prevention. v. 55, p. 1–11. Washington, D.C., DOI: 10.1016/j.aap.2013.02.012

Elvik, R. e T. Vaa (2004) The handbook of road safety measures. Elsevier, Oxford, Inglaterra.

Elvik, R. (2006) Laws of accident causation. Accident Analysis and Prevention, v. 38, n. 4, p. 742-747. DOI: 10.1016/j.aap.2006.01.005

EPTC (2015) Conjunto de Dados. Datapoa. Empresa Pública de Transporte e Circulação. Disponível em: <http://datapoa.com.br/dataset?q=acidentes&sort=score+desc%2C+metadata_modified+desc> Acesso em 30 abril 2015.

Ewing, R. e R. Cervero (2010) Travel and the built environment: a meta-analysis. Journal of the American Planning Association. v. 76, n. 3, p. 265-294, 2010. DOI: 10.1080/01944361003766766

Ewing, R. e E. Dumbaugh (2009) The Built Environment and Traffic Safety: A Review of Empirical Evidence. Journal of Plan-ning Literature, v. 23, n. 4, p. 347-367. DOI: 10.1177/0885412209335553

Ewing, R.; R. A. Schieber e C. V. Zegeer (2003) Urban sprawl as a risk factor in motor vehicle occupant and pedestrian fatali-ties. American Journal of Public Health, v. 93, n. 9. p. 1541-1545.

Ferreira, S. e A. Couto (2012) Categorical Modeling to Evaluate Road Safety at the Planning Level. Journal of Transportation Safety & Security, v. 4, n. 4, p. 308–322. DOI: 10.1080/19439962.2012.679385.

Hair, J. F.; W. C. Black; B. J. Babin; R. E. Anderson e R. L. Tatham (2009). Análise multivariada de dados. Bookman Editora.

Hillman, M.; J. Adams e J. Whitelegg (1990) One false move: A Study of Children’s Independent Mobility. Policy Studies Insti-tute. London, UK.

Jensen, S. U. (2008) How to obtain a healthy journey to school. Transportation Research Part A: Policy and Practice, v. 42, n. 3, p. 475-486. DOI: 10.1016/j.tra.2007.12.001

Larrañaga, A. M. L.; L. I. Rizzi; J. Arellana; O. Stramb e H. B. B. Cybis (2014) The Influence of built environment and travel attitudes on walking: a case study of Porto Alegre, Brazil. International Journal of Sustainable Transportation. v. 10 n. 4, p. 332-342. DOI: 10.1080/15568318.2014.933986

Litman, T. e S. Fitzroy (2016) Safe Travels: Evaluating Mobility Management Traffic Safety Impacts. Victoria: Victoria Transport Policy Institute.

Mannering, F. L. e C. R. Bhat (2014) Analytic methods in accident research analytic methods in accident research: methodo-logical frontier and future directions. Analytic Methods in Accident Research. v. 1, p. 1–22. DOI: 10.1016/j.amar.2013.09.001

McFadden, D. (1974) The measurement of urban travel demand. Journal of Public Economics, v. 3, n. 4, p.303-328. DOI: 10.1016/0047-2727(74)90003-6

Noland, R. B. e M. A. Quddus (2005) Congestion and safety: A spatial analysis of London. Transportation Research Part A: Policy and Practice, v. 39, n. 2005, 737–754. DOI: 10.1016/j.tra.2005.02.022

Orenstein, M. R.; N. Gutierrez; T. M. Rice; J. F. Cooper e D. R. Ragland (2007) Safe Routes to School Safety and Mobility Analysis. California: California Departament of Transportation.

Ortúzar, J. de D. e L. G. Willumsen (2011) Modelling Transport. JohnWiley & Sons, Ltd. 4th ed.

Patricios, N. N. (2002) Urban design principles of the original neighbourhood concepts. Urban Morphology. v. 6, n. 1, p. 21-32. ISSN: 1027-4278

Peden, M.; K. Oyegbite; J. Ozanne-Smith; A. A. Hyder; C. Branche; A. F. Rahma; F. Rivara e K. Bartolomeos (2008) World report on child injury prevention. Genebra: World Health Organization.

Quddus, M. A.; R. B. Noland e C. C. Hoong (2002) An analysis of motorcycle injury and vehicle damage severity using ordered probit models. Journal of Safety Research, v. 33, n. 4, p. 445-462. DOI: 10.1016/S0022-4375(02)00051-8

Quddus, M. A.; C. Wang e S. G. Ison (2010) Road Traffic Congestion and Crash Severity: Econometric Analysis Using Ordered Response Models. Journal of Transportation Engineering, v. 136, n. 5, p. 424-435. DOI: 10.1061/(ASCE)TE.1943-5436.0000044

Rifaat, S. M., R. Tay e A. De Barros (2011) Effect of street pattern on the severity of crashes involving vulnerable road users. Accident Analysis and Prevention, v. 43, n. 1, p. 276–283. DOI:10.1016/j.aap.2010.08.024

Rothman, L. M. (2014) Child pedestrian-motor vehicle collisions and walking to school in the city of Toronto: The role of the built environment. 199 f. Tese (Ph.D), The Institute of Medical Science: University of Toronto. Toronto, Canada.

Rothman, L. M.; R. Buliung; T. To; C. Macarthur; A. Macpherson e A. Howard (2015) Associations between parents perception of traffic danger, the built environment and walking to school. Journal of Transport and

Health. v. 2, n. 3, p. 327–335. DOI: 10.1016/j.jth.2015.05.004

Train, K. E. (2009). Discrete choice methods with simulation. Cambridge University Press.

United Nations (2016) Goal 11: Make cities inclusive, safe, resilient and sustainable. Sustainable Development Goals: 17 Goals to transform our world. Obtido de: <http://www.un.org/sustainabledevelopment/cities/>. Acesso em 11 de maio de 2016.

VTPI (2016) Online TDM Encyclopedia. Canadá, 2014. Victoria: Victoria Transport Policy Institute. Disponível em: <http://www.vtpi.org/tdm/index.php>. Acesso em 24 de agosto de 2016.

Welle, B.; W. Li; C. Adriazola; R. King; M. Obelheiro; C. Sarmiento e Q. Liu (2015) Cities safer by design: guidance and examples to promote traffic safety through urban and street design. World Resources Institute. ISBN: 978-1-56973-866-5. Washington, DC, Estados Unidos.

Washington, S. P.; M. G. Karlaftis e F. L. Mannering (2003) Statistical and Econometric Methods for Transportation Data Analy-sis. Chapman & Hall/CR, Boca Raton, Florida.

WHO (2015) Relatório Global Sobre o Estado da Segurança Viária 2015. World Health Organization. Genebra, Suíça. Obtido de: <http://www.who.int/violence_injury_prevention/road_safety_status/2015/Summary_GSRRS2015_POR.pdf?ua=1>/. Acesso em 9 de julho de 2017.

Yasmin, S.; N. Eluru e S. V. Ukkusuri (2014) Alternative ordered response frameworks for examining pedestrian injury sever-ity in New York City. Journal of Transportation Safety and Security. v. 6, n. 4, p. 275-300. DOI: 10.1080/19439962.2013.839590

Ye, F. e D. Lord (2011) Investigation of effects of underreporting crash data on three commonly used traffic crash severity models: multinomial logit, ordered probit, and mixed logit. Transportation Research Record: Journal of the Transportation Research Board, n. 2241, Transportation Research Board of the National Academies, Washington, D.C., 2011. p. 51–58. DOI: 10.3141/2241-06

Ye, F. e D. Lord (2014) Comparing three commonly used crash severity models on sample size requirements: Multinomial logit, ordered probit and mixed logit models. Analytic Methods in Accident Research, v. 1, p. 72-85, DOI: 10.1016/j.amar.2013.03.001

Zahabi, S. A. H.; J. Strauss, K. Manaugh e L. F., Miranda-Moreno, L. F. (2011) Estimating Potential Effect of Speed Limits, Built Environment, and Other Factors on Severity of Pedestrian and Cyclist Injuries in Crashes. Transportation Research Record: Journal of the Transportation Research

Board, n. 2247, p. 81-90. DOI: 10.3141/2247-10.

Downloads

Publicado

29-10-2017

Como Citar

Torres, T. B., Uriarte, A. M. L., Demore, C. P., & Nodari, C. T. (2017). Prevalência de fatores associados à severidade dos acidentes em entorno de escolas. TRANSPORTES, 25(3), 102–114. https://doi.org/10.14295/transportes.v25i3.1331

Edição

Seção

Artigos Vencedores do Prêmio ANPET Produção Científica