Discussão conceitual sobre métodos de reconstrução de matrizes origem-destino estáticas em redes de transportes
DOI:
https://doi.org/10.14295/transportes.v24i1.1017Palavras-chave:
Modelagem da Demanda por Transportes, Matrizes Origem-Destino Sintéticas, Reconstrução de Matrizes Origem-Destino, Estimação de Matrizes Origem-Destino.Resumo
Matrizes origem-destino (OD) quantificam a demanda por transporte em uma região geográfica e constituem peças-chave em estudos de planejamento, projeto e gerenciamento de sistemas de transportes urbanos e regionais. Tradicionalmente, matrizes OD são obtidas por meio da realização de levantamentos amostrais diretos, tais como: pesquisas domiciliares, contagem de placas de veículos e entrevistas em terminais de transporte público. Uma alternativa de menor custo consiste em sintetizar uma matriz OD por meio de métodos matemáticos com o uso de dados provenientes de contagens de tráfego feitas na rede de transportes em estudo, os quais podem ser classificados em métodos de reconstrução e de estimação. Este artigo apresenta uma discussão conceitual com foco nas premissas e limitações dos principais métodos de reconstrução baseados em maximização de entropia, mínimos quadrados generalizados e inferência bayesiana. Descreve-se detalhadamente a fundamentação matemática dos métodos e são feitas recomendações para o avanço e aplicação efetiva dos mesmos.
Downloads
Referências
Bell, M. G. H. (1983) The Estimation of an Origin-Destination Matrix from Traffic Counts. Transportation Science, v. 17, p. 198–217. DOI: 10.1287/trsc.17.2.198.
Bell, M. G. H. (1991) The Estimation of Origin-Destination Matrices by Constrained Generalized Least Squares. Transportation Research, v. 25B, p. 13-22. DOI: 10.1016/0191-2615(91)90010-G.
Bertoncini, B. V. e E. Kawamoto (2012) Modelagem da matriz OD sintética a partir dos volumes observados nas interseções da rede de transportes. Transportes, v. 20, n. 2, p. 75–83. DOI: 10.4237/transportes.v20i2.562.
Bertoncini, B. V.; C. F. G. Loureiro e E. Kawamoto (2013) Proposta e Avaliação de Algoritmo de Médias Sucessivas para Reconstrução de Matriz Origem-destino Sintética. Transportes, v. 21, n. 2, p. 21–29. DOI: 10.4237/transportes.v21i2.697.
Cascetta, E. (1984) Estimation of Trip Matrices from Traffic Counts and Survey Data: a Generalized Least Squares Estimator. Transportation Research, v. 16B, n. 4-5, p.89-99. DOI: 10.1016/0191-2615(84)90012-2.
Cascetta, E. (2009) Transportation Systems Analysis: Models and Applications (2a ed.). Springer, New York, USA. DOI: 10.1007/978-0-387-75857-2.
Cascetta, E. e S. Nguyen (1988) A Unified Framework for Estimating or Updating Origin/Destination Matrices from Traffic Counts. Transportation Research, v. 22B, p. 437–455. DOI: 10.1016/0191-2615(88)90024-0.
Daganzo, C. F. e Y. Sheffi (1977) On Stochastic Models of Traffic Assignment. Transportation Science, v. 11, n. 3, p. 253-274. DOI: 10.1287/trsc.11.3.253.
Fisk, C. (1988) On Combining Maximum Entropy Trip Matrix Estimation with User Optimal Assignment. Transportation Research B, v. 22, p. 69-79. DOI: 10.1016/0191-2615(88)90035-5.
Fisk, C. (1989) Trip Matrix Estimation from Link Counts: the Congested Network Case. Transportation Research B, v. 23, p. 331-336. DOI: 10.1016/0191-2615(89)90009-X.
Gelman, A.; J. B. Carlin; H. S. Stern e D. B. Rubin (2003) Bayesian Data Analysis (2a ed.). Chapman-Hall/CRC, Boca Raton, USA.
Hazelton, M. L. (2000) Estimation of Origin-Destination Matrices from Link Flows on Uncongested Networks. Transportation Research B, v. 34, p. 549-566. DOI: 10.1016/S0191-2615(99)00037-5.
Hazelton, M. L. (2001) Inference for Origin-Destination Matrices: Estimation, Prediction and Reconstruction. Transportation Research B, v. 35, p.667-676. DOI: 10.1016/S0191-2615(00)00009-6.
Lamond, B. e N. F. Stewart (1981) Bregman’s Balancing Method. Transportation Research B, v. 15 p. 239–248. DOI: 10.1016/0191-2615(81)90010-2.
Lo, H. P.; N. Zhang e W. H. K. Lam (1996) Estimation of an Origin-Destination Matrix with Random Link Choice Proportions: a Statistical Approach. Transportation Research B, v. 30, n. 4, p. 309-324. DOI: 10.1016/0191-2615(95)00036-4.
Maher, M. J. (1983) Inferences on Trip Matrices from Observations on Link Volumes: a Bayesian Statistical Approach. Transportation Research B, v. 17, p. 435–447. DOI: 10.1016/0191-2615(83)90030-9.
Marzano, V.; A. Papola e F. Simonelli (2009) Limits and Perspectives of Effective O-D Matrix Correction Using Traffic Counts. Transportation Research C, v. 17, p. 120-132. DOI: 10.1016/j.trc.2008.09.001.
McNeil, S. e C. Hendrickson (1985) A Regression Formulation of the Matrix Estimation Problem. Transportation Science, v. 19, p. 278–292. DOI: 10.1287/trsc.19.3.278.
Murchland, J. D. (1977) The Multiproportional Problem. TSG Note JDM-263, Transport Studies Group, University College London.
Ortúzar, J. de D. e L. G. Willumsen (2011) Modelling Transport (4a ed.). Wiley, Chichester. DOI: 10.1002/9781119993308.
Pitombeira-Neto, A. R. (2015) Dynamic Bayesian Statistical Models for the Estimation of the Origin-Destination Matrix. Tese de doutorado apresentada ao Programa de Pós-Graduação em Engenharia de Transportes do Departamento de Engenharia de Transportes da Universidade Federal do Ceará.
Prato, C. G. (2009) Route Choice Modeling: Past, Present and Future Research Directions. Journal of Choice Modelling, v. 2, n. 1, p. 65-100. DOI: 10.1016/S1755-5345(13)70005-8.
Robillard, P. (1975) Estimating the OD Matrix from Observed Link Volumes. Transportation Research B, v. 9, p. 123-128. DOI: 10.1016/0041-1647(75)90049-0.
Sheffi, Y. (1985) Urban Transportation Networks: Equilibrium Analysis with Mathematical Programming methods, Prentice-Hall, Englewood Cliffs, USA.
Smith, M. J. (1979) The Existence, Uniqueness and Stability of Traffic Equilibria. Transportation Research B, v. 13, p. 295-304. DOI: 10.1016/0191-2615(79)90022-5.
Spiess, H. (1987) A Maximum Likelihood Model for Estimating Origin-Destination Matrices. Transportation Research B, v. 21, p. 395–412. DOI: 10.1016/0191-2615(87)90037-3.
Tebaldi, C. e M. West (1998) Bayesian Inference on Network Traffic Using Link Count Data. Journal of the American Statistical Association, v. 93, n. 442, p. 557-573. DOI: 10.1080/01621459.1998.10473707.
Van Zuylen, H. (1978) The Information Minimizing Method: Validity And Application to Transport Planning. In: Jasen, G. R. H. et al. (eds.) New Developments in Modelling Travel Demand and Urban Systems, Saxon, Farnborough.
Van Zuylen, H. e D. M. Branston (1982) Consistent Link Flow Estimation from Counts. Transportation Research B, v. 16, p. 473-476. DOI: 10.1016/0191-2615(82)90006-6.
Van Zuylen, H. e L. G. Willumsen (1980) The Most Likely Trip Matrix Estimated from Traffic Counts. Transportation Research B, v. 14, p. 281-293. DOI: 10.1016/0191-2615(80)90008-9.
Vardi, Y. (1996) Network Tomography: Estimating Source-Destination Traffic Intensities from Link Data. Journal of the American Statistical Association, v. 91, p. 365-377. DOI: 10.2307/2291416.
Wardrop, J. G. (1952) Some Theoretical Aspects of Traffic Research. Proceedings of the Institution of Civil Engineers part II, Institution of Civil Engineers, p. 325-378. DOI: 10.1680/ipeds.1952.11259.
Watling, D. (2002a) A second order stochastic network equilibrium model, i: Theoretical foundation. Transportation Science, v. 36, n. 2, p. 149-166. DOI: 10.1287/trsc.36.2.149.560.
Watling, D. (2002b) A second order stochastic network equilibrium model, ii: Solution method and numerical experiments. Transportation Science, v. 36, n. 2, p. 167-183. DOI: 10.1287/trsc.36.2.167.564.
Willumsen, L. G. (1978) Estimation of an O-D Matrix from Traffic Counts: a Review. Institute for Transport Studies, Working Paper, n. 99, Leeds University.
Willumsen, L. G. (1981) Simplified Transport Demand Models Based On Traffic Counts. Transportation, v. 10, p. 257–278. DOI: 10.1007/BF00148462.
Willumsen, L. G. (1984) Estimating Time-Dependent Trip Matrices from Traffic Counts. Proceedings of the 9th International Symposium on Transportation and Traffic Theory, Delft University, Delft, Netherlands, p. 397-411.
Wilson, A. G. (1970) Entropy in Urban and Regional Modeling. Pion, London, England.
Yang, H. (1995) Heuristic Algorithms for the Bilevel Origin-Destination Matrix Estimation Problem. Transportation Research B, v. 29, n.4, p. 231-242. DOI: 10.1016/0191-2615(95)00003-V.
Yang, H.; T. Sasaki; Y. Iida e Y. Asakura (1992) Estimation of Origin-Destination Matrices from Link Counts on Congested Networks. Transportation Research B, v. 26, p. 417-434. DOI: 10.1016/0191-2615(92)90008-K.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Ao submeter um manuscrito para publicação neste periódico, todos os seus autores concordam, antecipada e irrestritamente, com os seguintes termos:
- Os autores mantém os direitos autorais e concedem à Revista TRANSPORTES o direito de primeira publicação do manuscrito, sem nenhum ônus financeiro, e abrem mão de qualquer outra remuneração pela sua publicação pela ANPET.
- Ao ser submetido à Revista TRANSPORTES, o manuscrito fica automaticamente licenciado sob a Licença Creative Commons Attribution, que permite o compartilhamento do trabalho com reconhecimento da autoria e da publicação inicial neste periódico.
- Os autores têm autorização para assumir contratos adicionais separadamente, para distribuição não exclusiva da versão do trabalho publicada neste periódico (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento da publicação inicial nesta revista, desde que tal contrato não implique num endosso do conteúdo do manuscrito ou do novo veículo pela ANPET.
- Os autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) depois de concluído o processo editorial. Como a Revista TRANSPORTES é de acesso livre, os autores são estimulados a usar links para o site da Revista TRANSPORTES nesses casos.
- Os autores garantem ter obtido a devida autorização dos seus empregadores para a transferência dos direitos nos termos deste acordo, caso esses empregadores possuam algum direito autoral sobre o manuscrito. Além disso, os autores assumem toda e qualquer responsabilidade sobre possíveis infrações ao direito autoral desses empregadores, isentando a ANPET e a Revista TRANSPORTES de toda e qualquer responsabilidade neste sentido.
- Os autores assumem toda responsabilidade sobre o conteúdo do trabalho, incluindo as devidas e necessárias autorizações para divulgação de dados coletados e resultados obtidos, isentando a ANPET e a Revista TRANSPORTES de toda e qualquer responsabilidade neste sentido.