A multi agent based system to enable dynamic vehicle routing

Autores

  • Dmontier Pinheiro Aragão, Jr. Universidade Federal de Santa Catarina
  • Antônio Galvão Novaes UFSC
  • Mônica Maria Mendes Luna Universidade Federal de Santa Catarina

DOI:

https://doi.org/10.14295/transportes.v23i1.765

Palavras-chave:

agentes, roteirização dinâmica de veículos, leilão vickrey, negociação.

Resumo

A realização das atividades de transporte comumente envolve diferentes atores e veículos dispersos numa rede, de forma que responder aos eventos dinâmicos presentes nas operações é uma tarefa complexa. Neste contexto, o uso de sistemas baseados em agentes (MAS) na tomada de decisões autônoma tem se mostrado potencialmente interessante e sido discutido na literatura recente. Neste artigo, é apresentado um sistema baseado em agentes para lidar com o problema de roteirização dinâmica de veículos, mais precisamente em um problema de coleta de peças e componentes, onde parte das tarefas previamente alocadas ao veículo pode ser eventualmente transferida para outros veículos, sempre que o MAS constatar que o tempo de ciclo pode exceder o limite diário da jornada de trabalho. A transferência das tarefas entre agentes é realizada através do método de negociação de Vickrey. O sistema proposto permite tomada de decisão de forma colaborativa entre os agentes envolvidos, permitindo a realização de ajustes durante a realização da rota inicial.

Downloads

Não há dados estatísticos.

Referências

Anosike, A. I.; Zhang, D. Z. (2009) An agent-based approach for integrating manufacturing operations. International Journal of Production Economics, v. 121, n. 2, p. 333-352. ISSN 0925-5273.

Aragão Junior, D.P. (2014) Colaboração em sistemas multiagentes na roteirização dinâmica de veículos : Um método para avaliação de estratégias em empresas OEM. Florianópolis, SC.

Ausubel, L. M. and Milgrom, P. (2006) The lovely but lonely Vickrey auction. Combinatorial Auctions. MIT Press.

Basseville, M. and Nikiforov, I. (1993) Detection of abrupt changes: theory and application. New Jersey.

Chen, Z.-L. (2010) Integrated Production and Outbound Distribution Scheduling: Review and Extensions. Operations Research, 58, 130-148.

Chow, H. K. H., Choy, K. L. and Lee, W. B. (2007) A dynamic logistics process knowledge-based system - An RFID multi-agent approach. Knowledge-Based Systems, 20, p. 357-372.

Dai, B. and Chen, H. (2011). A multi-agent and auction-based framework and approach for carrier collaboration. Logistics Research, 3(2), 101–120. DOI: 10.1007/s12159-011-0046-9

Davidsson, P., Henesey, L., Ramstedt, L., Törnquist, J. and Wernstedt, F. (2005) An analysis of agent-based approaches to transport logistics. Transportation Research Part C: Emerging Technologies, 13, p. 255-271.

Fox, M. S., Barbuceanu, M. and Teigen, R. (2000) Agent-oriented supply-chain management. International Journal of Flexible Manufacturing Systems, 12, p. 165-188.

Goel, A. (2008) Fleet Telematics: Real-time management and planning of commercial vehicle operations. New York, Springer.

Isermann, R. (1997) Supervision, fault-detection and fault-diagnosis methods - An introduction. Control Engineering Practice, 5, p. 639-652.

Isermann, R. (2005) Model-based fault-detection and diagnosis-status and applications. Annual Reviews in Control, 29, p. 71-85.

Jiang, T. and Tianfield, H. (2006) Literature Review Upon Multi-Agent

Supply Chain Management. International Conference on Machine Learning and Cybernetics, ICMLC, p. 89-94.

Jiao, J. X., You, X. and Kumar, A. (2006) An agent-based framework for collaborative negotiation in the global manufacturing supply chain network.

Robotics and Computer-Integrated Manufacturing, 22, p. 239-255.

Julka, N., Karimi, I. & Srinivasan, R., 2002. Agent-based supply chain management—2: a refinery application. Computers & Chemical Engineering, 26(12), pp.1771–1781.

Karageorgos, A. et al., 2003. Agent-based optimisation of logistics and production planning. Engineering Applications of Artificial Intelligence, 16(4), pp.335–348.

Larsen, A. (2001) The Dynamic Vehicle Routing Problem. Doctoral thesis, Technical University of Denmark.

Lau, J. S. K., Huang, G. Q., Mak, K. L., and Liang, L. (2006). Agent-based modeling of supply chains for distributed scheduling. Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on, 36(5), 847–861. DOI: 10.1109/TSMCA.2005.854231

Maciejewski, M. & Nagel, K., 2012. Towards Multi-Agent Simulation of the Dynamic Vehicle Routing Problem in MATSim. In R. Wyrzykowski et al., eds. Parallel Processing and Applied Mathematics. Lecture Notes in Computer Science. Berlin Heidelberg: Springer, pp. 551–560.

Mes, M., Van Der Heijden, M. and Van Harten, A. (2007) Comparison of agent-based scheduling to look-ahead heuristics for real-time transportation problems. European Journal of Operational Research, 181, p. 59-75.

Monostori, L., Vancza, J. and Kumara, S. R. T. (2006) Agent-based systems for manufacturing. International Academy for Production Engineering, Cirp Annals-Manufacturing Technology, 55, p. 697-720.

Novaes, A. G. N., Bez, E. T. and Burin, P. J. (2012) Fault detection in dynamic vehicle routing operations. International Conference on Dynamics in Logistics, LDIC. Bremen, Alemanha.

Novaes, A. G. N., Scholz-Reiter, B., Bez, E. T. and Burin, P. J. (2011) An agent-based approach to improve urban vehicle rounting operations. XXV Congresso de Pesquisa e Ensino em Transportes, ANPET. Belo Horizonte, Brazil.

Parunak, H. V. D. (2000). Agents in overalls: Experiences and issues in the development and deployment of industrial agent-based systems. International Journal of Cooperative Information Systems, 9(03), 209–227.

Roorda, M.J. et al., 2010. A conceptual framework for agent-based modelling of logistics services. Transportation Research Part E: Logistics and Transportation Review, 46(1), pp.18–31.

Russel, S. and Norvig, P. (2003) Artificial Intelligence: A Modern Approach. New Jersey, NJ, USA, Prentice Hall.

Schuh, G. (2006). Sm@rt Logistics: Intelligent networked systems. {CIRP}

Annals - Manufacturing Technology, 55(1), 505–508. DOI: 10.1016/S0007-8506(07)60469-7

Simani, S., Fantuzzi, C. and Patton, R. (2003) Model-based fault diagnosis in dynamic systems using identification techniques. Springer.

Vokrinek, J., Komenda, A. & Pechoucek, M., 2010. Agents Towards Vehicle Routing Problems. In Proceedings of the 9th International Conference on Autonomous Agents and Multiagent Systems. AAMAS ’10. Richland, SC: International Foundation for Autonomous Agents and Multiagent Systems, pp. 773–780.

W3C (2010) Web Services Glossary. Visited in 20/06/2013. Url: http://www.w3.org/TR/ws-gloss/.

Wellman, M. P., Walsh, W. E., Wurman, P. R. and Mackie-Mason, J. K. (2001) Auction Protocols for Decentralized Scheduling. Games and Economic Behavior, 35, p. 271-303.

Wooldridge, M. (2002). An introduction to multiagent systems. John Wiley & Sons. Chichester, England.

Downloads

Publicado

12-05-2015

Como Citar

Aragão, D. P., Novaes, A. G., & Mendes Luna, M. M. (2015). A multi agent based system to enable dynamic vehicle routing. TRANSPORTES, 23(1), 69–77. https://doi.org/10.14295/transportes.v23i1.765

Edição

Seção

Artigos