.

Authors

  • Lucio. Salles de Salles Universidade de São Paulo
  • José Tadeu Balbo Universidade de São Paulo
  • Deividi da Silva Pereira Universidade Federal de Santa Maria

DOI:

https://doi.org/10.14295/transportes.v23i2.835

Keywords:

Continuously Reinforced Concrete Pavement, Cracking, Load Transfer Efficiency, Dynamic Stresses.

Abstract

As a proposed long-term pavement solution for bus stops and corridors in highly urbanized areas, four experi-mental short continuously reinforced concrete pavement (CRCP) sections with different percentages of longitudinal steel were built in São Paulo, Brazil. The pavement sections are only 50 meters long each, a short constructive length in comparison to traditional CRCP normally built as long as the concreting process allows. A four-year crack survey showed that the shorter length, and the consequential lack of anchorage, makes the short CRCP crack pattern to be unlike the traditional CRCP one; for instance, one of the pavement sections did not present any cracks yet. Two non-destructive tests were carried out to evaluate the short CRCP’s structural performance: firstly, deflection tests using a falling weight deflectometer to evaluate layer elastic parameters through backcalculation, i. e., elastic modulus of concrete (E) and mudulos of subgrade reaction (k) and to determinate the load transfer efficiency across cracks; secondly, dynamic load tests to obtain the concrete stresses under a known truck axle load. The results show lower E and k for points near the slab edge and the braking influence on the stresses.

Downloads

Download data is not yet available.

Author Biographies

Lucio. Salles de Salles, Universidade de São Paulo

Candidato a Doutorado

Departamento de Engenharia de Transportes - EPUSP

José Tadeu Balbo, Universidade de São Paulo

Professor Associado

Deividi da Silva Pereira, Universidade Federal de Santa Maria

Professor Assistente

References

Balbo, J. T. (2009). Pavimentos de concreto. Oficina de Textos, São Paulo.

Balbo, J. T.; Massola, A.; Pereira, D. (2012). Structural aspects of the experimental CRCP in São Paulo. Proceedings of the 10th International Conference on Concrete Pavements, International Society for Concrete Pavements, Quebec.

Colim, G. M.; Balbo J. T.; Khazanovich, L. (2011) Effects of temperature changes on load transfer in plain concrete pavement joints. Ibracon Structures and Materials Journal, v. 4, p. 405-437.

Crovetti, J. A. (1997) Design and evaluation of jointed concrete pavement systems incorporating open-graded permeable bases. Ph. D. Dissertation, University of Illinois.

Davids, W. (2004). EverFE: Software for the 3D Finite Element Analysis of Jointed Plain Concrete Pavements. (Available at: www.civil.umaine.edu/everfe/).

Dossey, T.; Hudson, W. R. (1994). Distress as function of age in continuously reinforced concrete pavements: models developed for Texas pavement management information system. Transportation Research Record, v. 1455, p. 159 – 165.

Gharaibeh, N. G.; Darter, M. I.; Heckel, L. B. (1999). Field performance of continuously reinforced concrete pavement in Illinois. Transportation Research Record, v. 1684, p. 44 – 50. DOI: 10.3141/1684-06

Hall, K. T. (1991) Performance, evaluation and rehabilitation of asphalt-overlaid concrete pavements. Ph.D. Dissertation. University of Illinois.

Jeong, J. H.; ZollingeR, D. G. (2001) Characterization of stiffness parameters in design of continuously reinforced and jointed pavements. Transportation Research Record, v. 1778, p. 54 – 63. DOI: 10.3141/1778-07

Johnston, D. P.; SurdahL, R. W. (2006). Effects of base type modelling long-term pavement performance of continuously reinforced concrete sections. Transportation Research Record, v. 1979, p. 93 – 101. DOI: 10.3141/1979-14

Kim, S. M.; Won, M. C.; Mccullough, B. F. (2002) Dynamic stresses response of concrete pavements to moving tandem-axle loads. Transportation Research Record, n. 1809, p. 32-41. DOI: 10.3141/1809-04

Kohler, E.; Roesler, J. (2004). Active crack control for continuously reinforced concrete pavements. Transportation Research Record, v. 1900, p. 19 – 29. DOI: 10.3141/1900-03

Liu, C.; Wang Z.; Lee, J. N. (2008) Influence of concrete joints on roughness index and pavement serviceability. International Journal of Pavement Research and Technology, v. 1, n. 4, p. 143-147.

Mccullough, B. F.; Dossey, T. (1999). Considerations for high-performance concrete paving. Recommendations from 20 years field experience in Texas. Transportation Research Record, v. 1684, p. 17 – 24. DOI: 10.3141/1684-03

Pereira, D. S.; Balbo j. T. (2001) Gradientes térmicos em whitetopping ultradelgado na pista experimental instrumentada da USP. Transportes, v. 9, p. 69-87. DOI: 10.4237/transportes.v18i3.450

Rodolfo, M. P.; Balbo J. T. (2010) Modelos para dimensionamento de pavimentos de concreto simples submetidos a carregamentos rodoviários e ambientais empregando análise multivariada de dados. Transportes, v. 18, p. 42-50. DOI: 10.4237/transportes.v9i1.180

Salles, L. S.; Balbo, J. T.; Massola, A. M. A; Pereira, D. S. (2012) Análise de desempenho inicial de um pavimento de concreto continuamente armado de curta extensão. Anais do XXVI Congresso Nacional de Pesquisa e Ensino em Transportes, ANPET, Joinville.

Salles, L. S.; Balbo J. T.; Pereira, D. S. (2013) Crack pattern characterization in a short experimental continuously reinforced concrete pavement. Proceedings of the 2013 International Journal of Pavements Conference, IJPC, São Paulo.

Schindler, A. K.; Mccullough, B. F. (2002). Importance of concrete temperature control during concrete pavement construction in hot weather conditions. Transportation Research Record, v. 1813, p. 3 – 10. DOI: 10.3141/1813-01

Shahin, M. Y. (1985). Use of the falling weight deflectometer for the non-destructive deflection testing of jointed concrete airfield pavements. Proceedings of the 3rd International Conference on Concrete Pavement Design and Rehabilitation, Purdue University, p. 549-556.

Silva, P. D. E. A.; Motta, L. M. G (1999). Instrumentação da pista circular experimental do IPR/DNER. Transportes, v. 7, p. 29-46.

Tayabji, S. D.; Stephanos, P. J; Zollinger, D. G. (1995). Nationwide field investigation of continuously reinforced concrete pavements. Transportation Research Record, v. 1482, p. 7 – 18.

Won, M. C. (2011). Continuously reinforced concrete pavement: identification of distress mechanisms and improvement of mechanistic-empirical design procedures. Transportation Research Record, v. 2226, p. 51 – 59. DOI: 10.3141/2226-06

Xiao, T., Sun, J., Wang, X., and Chen, Z. (2011) Dynamic Response Analysis of Cement Concrete Pavement under Different Vehicle Speeds. In: Pavements and Materials: Recent Advances in Design, Testing and Construction (GeoHunan 2011) p. 1-9. DOI: 10.1061/47623(402)1

Zhang, W.; Wang, G.; Ma, S; Li, X. (2007) Field experimental study on measurement and analysis strain on the rigid pavement slab subjected to moving vehicle loads. Proceedings of the International Conference on Transportation Engineering (ICTE), ASCE, China.

Zollinger, D. G.; Barenberg, E. J. (1990) Mechanistic design considerations for punchout distress in continuously reinforced concrete pavement. Transportation Research Record, v. 1286, p. 25 – 37.

Published

2015-08-28

How to Cite

Salles, L. S. de, Balbo, J. T., & Pereira, D. da S. (2015). TRANSPORTES, 23(2), 65–74. https://doi.org/10.14295/transportes.v23i2.835

Issue

Section

Artigos