The consideration of traffic loading effect on flexible pavements design and in hot mix asphalt design

Authors

  • Danilo Keniti Nais Inoue Universidade de São Paulo
  • Jose Leomar Fernandes Junior Universidade de São Paulo

DOI:

https://doi.org/10.58922/transportes.v32i1.2888

Keywords:

Asphalt Pavement. Traffic Loading. Pavement Design. Hot Mix Asphalt Design.

Abstract

The asphalt pavement is composed by materials of various sources, such as soils, rocks, water, asphalt binder, cement, lime and other chemical additives, mineral and vegetable fibers, and geomembranes, and is submitted to weather exposure and traffic loads that are inherently uncertain in terms of magnitude, date, and conditions of occurrence. One can estimate rainfall and temperature variations, as well as traffic volumes and loads, but it is not certain whether they will occur or under what combinations it can take place during the pavement life cycle. Pavement performance is conditioned by the material types and thicknesses of the layers. This work was developed to better quantify the effects of traffic loading - improving pavement design – and particularly regarding the most important layer, resulting in a better Hot Asphalt Mixture (HAM) Design. Since the traffic effect depends on the pavement structure, structural parameters associated with distresses that are prevented during pavement design (fatigue cracking in the surface layer and rutting in the wheel paths) and a satisfactory HMA design (rutting within the asphalt layer) must be considered. Therefore, pavement structures commonly designed and built in Brazil are reproduced in software simulations considering traffic loading scenarios - based on legal records for weight limits - and different stiffnesses for the asphalt course layer, in order to assess the compaction effect on HMA. A mechanistic approach for load equivalence was performed and it concludes that increasing the stiffness of the asphalt layer decreases the equivalent damage the predominant pavement failure mechanisms (fatigue cracking and rutting) are taken into account. Finally, a caveat is made to the need for experimental validation for fatigue curves that considers the compaction level required to achieve the proper stiffness of the asphalt course for heavy-traffic load, considered ideal by the mechanistic analyses done in terms of load equivalence.

Downloads

Download data is not yet available.

References

ASPHALT INSTITUTE. Mix Design Methods for Asphalt Concrete and Other Hot-Mix Types. Manual Series No.2 (MS-2), Sixth Edition, 2011.

BALBO, J. T. Estudo das Propriedades Mecânicas das Misturas de Brita e Cimento e sua Aplicação aos Pavimentos Semi-rígidos. Tese de Doutorado, Escola Politécnica da Universidade de São Paulo, São Paulo, 1993.

BALBO, J.T. Pavimentação asfáltica: materiais, projeto e restauração. São Paulo: Oficina de Textos, 2007.

BERNUCCI, L.B.; MOTTA, L. M. G.; CERATTI, J. A. P.; SOARES, J. B. Pavimentação asfáltica: formação básica para engenheiros. Rio de Janeiro: PETROBRAS, Associação Brasileira das Empresas Distribuidoras de Asfaltos - ABEDA, Rio de Janeiro, 2008.

BRASIL. Resolução nº 258, de 30 de novembro de 2007. Dispõe da metodologia de aferição de peso de veículos, estabelece percentuais de tolerância e dá outras providências. Conselho Nacional de Trânsito. Brasília, 2007.

BRASIL. Resolução nº 489, de 05 de junho de 2014. Dispõe da metodologia de aferição de peso de veículos, estabelece percentuais de tolerância e dá outras providências. Conselho Nacional de Trânsito. Brasília, 2014.

BRASIL. Resolução nº 526, de 29 de maio de 2015. Dispõe da metodologia de aferição de peso de veículos, estabelece percentuais de tolerância e dá outras providências. Conselho Nacional de Trânsito. Brasília, 2015.

BRASIL. Lei nº 14.229, de 21 de outubro de 2021. Dispõe sobre a fiscalização do excesso de peso dos veículos. Conselho Nacional de Trânsito. Brasília, 2021.

BURMISTER, D. M. The general theory of stresses and displacements in layered systems. Journal of Applied Physics, v.16, p 89-94; n. 3, p. 126-127, n. 5, p 296-302, 1945. DOI: https://doi.org/10.1063/1.1707590

CLAESSEN, A. M.; EDWARDS, J. M.; SOMMER, P.; UGE, P. Asphalt Pavement Design: The Shell Method – Proceedings. Fourth International Conference on the Structural Design of Asphalt Pavements, Vol. 1, pp-327-341, University of Michigan, Ann Arbor, Michigan, 1977.

CONFEDERAÇÃO NACIONAL DO TRANSPORTE. Pesquisa CNT de Rodovias 2019. Brasília, 2019.

CONWAY, A.; WALTON, C. M. Analysis and cost-recovery optimization methodology for a fixed-class truck tolling structure. Transportation Research Record: Journal of the Transportation Research Board, No. 2066, pp. 90–97 Transportation Research Board of the National Academies, Washington, D.C., 2008. DOI: https://doi.org/10.3141/2066-10

DRAKOS, C.; ROQUE, R.; BIRGISSON, B. Effects of Measured Tire Contact Stresses on Near-Surface Rutting. Transportation Research Record: Journal of the Transportation Research Board, No. 1764, 59–69. doi:10.3141/1764-07, 2001. DOI: https://doi.org/10.3141/1764-07

FABBRI, G. T. P.; FERNANDES JR, J. L.; WIDMER, J. A.; SÓRIA, M. H. A. Análise de Composições Rodoviárias de Carga quanto a Fatores de Destruição dos Pavimentos. 24ª Reunião Anual de Pavimentação – ABPv, Belém, 1990.

FERNANDES JR, J. L. Investigação dos efeitos das solicitações do tráfego sobre o desempenho de pavimentos. Tese (Doutorado em Transportes) - Escola De Engenharia De São Carlos, Universidade de São Paulo, São Carlos, 1994.

FINN, F.N.; SARAF, C.; KULKARNI, R.; NAIR, K.; SMITH, W.; ABDULLAH, A. The Use of Distress Prediction Subsystems for the Design of Pavement Structures. Proc. Fourth International Conference on the Structura Design of Asphalt Pavements, pp. 3-38, University of Michigan, 1977.

GILLESPIE, T.D.; KARAMIHAS, S.M.; CEBON, D.; SAYERS, M.W.; NASIM, M.A.; HANSEN, W. E EHSAN, N. Effects of heavy vehicle characteristics on pavement response and performance - Final Report 1-25. National Cooperative Highway Research Program - TRB - The University of Michigan Transportation Research Institute, 1992.

GONÇALVES, R. F. Proposta de ajuste nas energias de compactação para dosagem de misturas asfálticas com uso de compactador giratório em função da estrutura do pavimento. Tese (Doutorado em Transportes) - Escola De Engenharia De São Carlos, Universidade de São Paulo, São Carlos, 2018.

GOUVEIA, L. T. Contribuições ao estudo da influência de propriedades de agregados no comportamento de misturas asfálticas densas. Tese (Doutorado em Transportes) - Escola De Engenharia De São Carlos, Universidade de São Paulo, São Carlos, 2006.

HAAS, R., HUDSON, W.R. e ZANIEWSKI, J. Modern Pavement Management - Krieger Publishing Co. - Malamar, Florida – 1994.

HIGHWAY RESEARCH BOARD. Report 7: Summary report – Publication nº 1061. National Academy of Sciencies – National Research Council, Divison of Engineering and Industrial Research. Washington, DC. 1962.

JOHNSON, M. C.; Estimating Asphalt binder fatigue resistence using and accelerated test method. University of Wisconsin, Madison, Madison, 2017.

KHAVASSEFAT, P. Vehicle-pavement Interaction. Doctoral Thesis, Department of Transport Scientes, Institue of Technology KTH, Sweden, 2014.

MACHEMEHL, R. B.; WANG, F.; PROZZI, J. A. Analytical study of effects of truck tire pressure on pavements with measured tire-pavement contact stress data. Transportation Research Record: Journal of the Transportation Research Board, No. 1919, , pp. 111–120, Transportation Research Board of the National Academies, Washington, D.C., 2005. DOI: https://doi.org/10.1177/0361198105191900112

MEDINA, J.; MOTTA, L. M. G. M. Mecânica dos Pavimentos. 3ª Edição. Rio de Janeiro: Editora Interciência, 2015.

NOBAKHT, M.; SAKHAEIFAR, M. S.; NEWCOMB, D.; UNDERWOOD, S. Mechanistic-empirical methodology for selection of cost-effective rehabilitation strategy for flexible Pavements. Journal of Pavement Engineering, 19:8, 675-684, 2016. DOI: https://doi.org/10.1080/10298436.2016.1199878

PROZZI, J.; MADANAT, S. Development of pavement performance models by combining experimental and field data. Journal of Infrastructure Systems, ASCE, 9–22, 2004. DOI: https://doi.org/10.1061/(ASCE)1076-0342(2004)10:1(9)

QUEIROZ, C. A. V. Modelos de Desempenho de Pavimentos: desenvolvimento e aplicação- DNER 692/50. Instituto de Pesquisas Rodoviárias, Rio de Janeiro, 1982.

ROBERTS, F. L.; KANDHAL, P. S.; BROWN, E. R.; LEE, D. Y.; KENNEDY, T. W. Hot mix asphalt materials, mixture design, and construction. Laham: Ed. NAPA, Education Foundation. Maryland, 1991.

WEISSMAN, S. L. Influence of tire-pavement contact strees distribution on development of distress mechanisms in Pavements. Transportation Research Record: Journal of the Transportation Research Board, No. 1655, Paper No. 99–0774, Transportation Research Board of the National Academies, Washington, D.C., 1999. DOI: https://doi.org/10.3141/1655-21

WHITE, T.D. Marshall procedures for design and quality control of asphalt mixtures. Proceedings Association of Asphalt Paving Technologists Technical Sessions, San Antonio, v. 54, 1985.

YODER, E. J.; WITCZAK, M. W.; Principles of Pavement Design. 2ª Edição. New York: John Wiley, 1975. DOI: https://doi.org/10.1002/9780470172919

Downloads

Published

2024-04-16

How to Cite

Inoue, D. K. N., & Fernandes Junior, J. L. (2024). The consideration of traffic loading effect on flexible pavements design and in hot mix asphalt design. TRANSPORTES, 32(1). https://doi.org/10.58922/transportes.v32i1.2888

Issue

Section

Artigos