Computational numerical and analytical study of the structural behavior of railway tracks with different structures
DOI:
https://doi.org/10.58922/transportes.v31i1.2848Keywords:
Railway, Railway design, Numerical Modeling, Analytical modelsAbstract
Computational models are commonly employed for structural analysis of railways, making it possible to study pavements composed by different types of materials, such as bituminous subballast (BS). On the other hand, empirical equations by Talbot et al. (1920) and Japanese National Railways (JNR) are still widely used in railway design, even though they are based on simplifying assumptions that may not faithfully represent field conditions. This paper performs a parametric study in order to evaluate the differences between the stress transmission in the infrastructure components calculated by a computational numerical model calibrated with field data and by the equations of Talbot et al. (1920) and JNR. For this, 36 permanent way configurations were studied with wheel load values and materials applied in infrastructure layers present in Brazilian railways. The behavior of the track containing a BS is also discussed. In some situations, the sleeper/ballast stresses by Talbot et al. (1920) were lower when compared to the model. In general, ballast/subballast and subballast/subgrade stresses calculated by the analytical equations were higher than the values calculated with the model, being the JNR least conservative among the equations used. The BS increased the track stiffness, reduced the vertical stresses and the deviator/confining stress ratio in the subgrade.
Downloads
References
Alves, T.; P.A.M. Pereira; R. Motta et al. (2022) Three-dimensional numerical modelling of railway track with varying air voids content bituminous subballast. Road Materials and Pavement Design, v. 23, n. 2, p. 414-32. DOI: 10.1080/14680629.2020.1828150. DOI: https://doi.org/10.1080/14680629.2020.1828150
AREMA (2020) Manual for Railway Engineering. Lanham: AREMA.
Atalar, C.; B.M. Das; E.C. Shin et al. (2001) Settlement of geogrid-reinforced railroad bed due to cyclic load. In XV International Conference on Soil Mechanics and Geotechnical Engineering. Londres: International Society for Soil Mechanics and Geotechnical Engineering, p. 2045-8.
Babu, K.G. e C. Sujatha (2010) Track modulus analysis of railway track system using finite element model. Journal of Vibration and Control, v. 16, n. 10, p. 1559-74. DOI: 10.1177/1077546309341600. DOI: https://doi.org/10.1177/1077546309341600
Costa, R.; R. Mota; J. Pires et al. (2017) Avaliação estrutural in situ de uma via férrea reforçada com geogrelha. In XXXI
Congresso Nacional de Pesquisa em Transporte da ANPET. Rio de Janeiro: ANPET, p. 1098-109.
Costa, R.C. (2016) Proposição de Dispositivo de Medidas “in situ” para Avaliação do Comportamento Mecânico de Lastro Ferroviário: Estudo de Caso na Estrada de Ferro Carajás. Dissertação (mestrado). Escola Politécnica, Universidade de São Paulo, São Paulo. Disponível em: <http://www.teses.usp.br/teses/disponiveis/3/3138/tde-30092016-140923/> (acesso em 14/03/2023).
Guimarães, A.C.R.; J.C. Silva Filho e C.D. Castro (2021) Contribution to the use of alternative material in heavy haul railway sub-ballast layer. Transportation Geotechnics, v. 30, p. 100524. DOI: 10.1016/j.trgeo.2021.100524. DOI: https://doi.org/10.1016/j.trgeo.2021.100524
Indraratna, B.; W. Salim e C. Rujikiatkamjorn (2011) Advanced Rail Geotechnology – Ballasted Track. Londres: Taylor and Francis Group. DOI: 10.1201/b10861. DOI: https://doi.org/10.1201/b10861
Indraratna, B.; Y. Qi; T. Ngo et al. (2019) Use of geogrids and recycled rubber in railroad infrastructure for enhanced performance. Geosciences, v. 9, n. 1, p. 30. DOI: 10.3390/geosciences9010030. DOI: https://doi.org/10.3390/geosciences9010030
Klincevicius, M.G.Y. (2011) Estudo de Propriedades, de Tensões e do Comportamento Mecânico de Lastros Ferroviários. Dissertação (mestrado). Universidade de São Paulo, São Paulo. DOI: 10.11606/D.3.2011.tde-27032012-121114. DOI: https://doi.org/10.11606/D.3.2011.tde-27032012-121114
Li, D. (2018) 25 years of heavy axle load railway subgrade research at the Facility for Accelerated Service Testing (FAST). Transportation Geotechnics, v. 17, p. 51-60. DOI: 10.1016/j.trgeo.2018.09.003. DOI: https://doi.org/10.1016/j.trgeo.2018.09.003
Merheb, A.H.M. (2014) Análise Mecânica lo Lastro Ferroviário por Meio de Ensaios Triaxiais Cíclicos. Dissertação (mestrado). Universidade de São Paulo, São Paulo. DOI: 10.11606/D.3.2014.tde-20052015-160602. DOI: https://doi.org/10.11606/D.3.2014.tde-20052015-160602
Monteiro, D.T. (2015) Influência da Rigidez Vertical no Comportamento Mecânico e Dimensionamento da Via Permanente Ferroviária. Dissertação (mestrado). Universidade de São Paulo, São Paulo. DOI: 10.11606/D.3.2016.tde-22062016-104819. DOI: https://doi.org/10.11606/D.3.2016.tde-22062016-104819
Paixão, A. e E. Fortunato (2010) Rail track structural analysis using three-dimensional numerical models. In Benz, T. e S. Nordal (eds.) Proceedings of the Seventh European Conference on Numerical Methods in Geotechnical Engineering. Boca Raton: CRC Press, p. 575-80. DOI: 10.1201/b10551-105. DOI: https://doi.org/10.1201/b10551-105
Pereira, P.A.M. (2018) Estudo do Uso do Geocomposto em Via Permanente Ferroviária. Dissertação (mestrado). Universidade de São Paulo, São Paulo. DOI: 10.11606/D.3.2018.tde-04052018-135218. DOI: https://doi.org/10.11606/D.3.2018.tde-04052018-135218
Profillidis, V.A. (2006) Raiway Management and Engineering (3a ed.). Hampshire: Ashgate Publishing Ltd.
Rangel, G. (2017) Um Método para a Estimativa da Deflexão do Pavimento Ferroviário Lastreado Tese (doutorado). Universidade Federal do Rio de Janeiro, Rio de Janeiro. Disponível em: <http://hdl.handle.net/11422/9808> (acesso em 30/03/2023).
Rangel, G.W.A.; F.T.S. Aragão e L.M.G. Motta (2015) Modelagem computacional do pavimento ferroviário usando concreto asfáltico como alternativa para a construção da camada de sublastro. In 44o Reunião Anual de Pavimentação. 18º Encontro Nacional de Conservação Rodoviária. Curitiba: Secretaria de Infraestrutura e Logística do Paraná/Departamento de Estradas de Rodagem do Paraná, p. 1-15.
Raymond, G.P. (1985) Analysis of track support and determination of track modulus. Transportation Research Record: Journal of the Transportation Research Board, v. 1022, n. 1, p. 80-90.
Rose, J.G.; D.B. Clarke; Q. Liu et al. (2018) Application of granular material pressure cells to measure railroad track tie/ballast interfacial pressures. Transportation Research Record: Journal of the Transportation Research Board, v. 2672, n. 10, p. 146-55. DOI: 10.1177/0361198118775872. DOI: https://doi.org/10.1177/0361198118775872
Selig, E.T. e D. Li (1994) Track modulus: its meaning and factors influencing it. Transportation Research Record: Journal of the Transportation Research Board, v. 1470, p. 47-54.
Sevi, A.F. (2008) Physical Modeling of Railroad Ballast Using the Parallel Gradation Scaling Technique Within the Cyclical Triaxial Framework Tese (doutorado). Missouri University of Science and Technology, Rolla. Disponível em: <https://scholarsmine.mst.edu/doctoral_dissertations/1929> (acesso em 30/03/2023).
Sharma, S.K. e A. Kumar (2016) Dynamics analysis of wheel rail contact using FEA. Procedia Engineering, v. 144, p. 1119-28. DOI: 10.1016/j.proeng.2016.05.076. DOI: https://doi.org/10.1016/j.proeng.2016.05.076
Silva, L.F.M. (2002) Fundamentos Teórico-Experimentais da Mecânica dos Pavimentos Ferroviários e um Esboço de um Sistema de Gerência Aplicado Tese (doutorado). Universidade Federal do Rio de Janeiro, Rio de Janeiro. Disponível em: <http://www.coc.ufrj.br/pt/teses-de-doutorado/146-2002/924-luiz-francisco-muniz-da-silva> (acesso em 30/03/2023).
Talbot, A.N.; W.M. Dawley; A.S. Baldwin et al. (1918) Stress in railroad track. In Nineteenth Annual Convention of the American Railway Engineering Association. Washington: American Railway Engineering Association, vol. 19, p. 875-1058. DOI: 10.1007/s13398-014-0173-7.2.
Talbot, A.N.; W.M. Dawley; A.S. Baldwin et al. (1920) Second progress report of the Special Committee on Stresses in Railroad Track. In Proceedings of the Twenty-first Annual Convention of the American Railway Engineering Association. Lanham: AREMA, p. 645-814.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Paulo Pereira, Talita Alves, Rosângela Motta, Liedi Bernucci, Edson Moura
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who submit papers for publication by TRANSPORTES agree to the following terms:
- Authors retain copyright and grant TRANSPORTES the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors may enter into separate, additional contractual arrangements for the non-exclusive distribution of this journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in TRANSPORTES.
- Authors are allowed and encouraged to post their work online (e.g., in institutional repositories or on their website) after publication of the article. Authors are encouraged to use links to TRANSPORTES (e.g., DOIs or direct links) when posting the article online, as TRANSPORTES is freely available to all readers.
- Authors have secured all necessary clearances and written permissions to published the work and grant copyright under the terms of this agreement. Furthermore, the authors assume full responsibility for any copyright infringements related to the article, exonerating ANPET and TRANSPORTES of any responsibility regarding copyright infringement.
- Authors assume full responsibility for the contents of the article submitted for review, including all necessary clearances for divulgation of data and results, exonerating ANPET and TRANSPORTES of any responsibility regarding to this aspect.