Liquefied natural gas road transport: a simulation study in Mato Grosso, Brazil
DOI:
https://doi.org/10.14295/transportes.v29i4.2450Keywords:
Road transport, Energy transport, Liquefied natural gas, BrazilAbstract
The aim of this article is to evaluate the viability of transporting Liquified Natural Gas (LNG) by truck in the Mato Grosso (MT) state, Brazil, comparing the costs of substituting other energy sources for the Bolivian Natural Gas (NG) and estimating the potential available market in the five mesoregions of the state. The simulation results show a potential NG market of 2.1 MMm3/day at a competitive cost compared to the assessed fuels in the economic sectors evaluated in the MT state. LNG transported by road has shown to be more advantageous than electric energy and diesel oil. On the other hand, fuel oil costs were slightly lower than NG costs. This simulation can serve as inspiration to extend the use of small-scale LNG by road in states or countries with similar characteristics, especially those with the possibility of the constant supply of NG and limited pipeline network.
Downloads
References
Alam, Md. S.; Paramati, S. R.; Shahbaz, M. and Bhattacharya, M. (2017) Natural gas, trade and sustainable growth: empirical evidence from the top gas consumers of the developing world. Applied Economics, v. 49, n. 7, p. 635–649. DOI: 10.1080/00036846.2016.1203064
Alexopoulos, T. A. (2017). The growing importance of natural gas as a predictor for retail electricity prices in US. Energy, v. 137, p. 219–233. DOI: 10.1016/j.energy.2017.07.002
Alves, L. M., Domingues, A., and Carvalho, M. da G. (2005) Small scale LNG in Madeira Island. Available at: <https://inis.iaea.org/search/search.aspx?orig_q=RN:40022830> (access in 23/03/2020).
ANP. (2019). Boletim da Produção de Petróleo e Gás Natural (Issue 102). Available at: <http://www.anp.gov.br/arquivos/publicacoes/boletins-anp/producao/boletim-fevereiro-2019.pdf> (access in 15/05/2020)
Azevedo Filho, E. T.; Palma, M. A. M.; Perestrelo, M.; da Hora, H. R. M. and Lira, R. A. (2019). The pre-salt layer and challenges to competitiveness in Brazil: Critical reflections on the local content policy in the oil and gas Sector. The Extractive Industries and Society, v. 6, n. 4, p. 1168–1173. DOI: 10.1016/j.exis.2019.09.009
BCB. (n.d.). Séries de estatísticas consolidadas. Available at: <https://www3.bcb.gov.br/expectativas/publico/consulta/serieestatisticas> (access in 08/11/2018)
Biscardini, G., Schmmill, R. and Maestro, A. (2017) Small going big: Why small-scale LNG may be the next big wave. Available at: <https://www.strategyand.pwc.com/gx/en/insights/2017/small-going-big.html> (access in 30/06/2019).
Bittante, A., Pettersson, F. and Saxén, H. (2018). Optimization of a small-scale LNG supply chain. Energy, v. 148, p. 79–89. DOI: 10.1016/j.energy.2018.01.120
BP. (2019). British Petroleum Statistical Review of World Energy. Available at: <https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2019-full-report.pdf> (access in 09/11/2020).
Cathles, L. M. (2012). Assessing the greenhouse impact of natural gas. Geochemistry, Geophysics, Geosystems, v. 13, n. 6, p. 1-38. DOI: 10.1029/2012GC004032
Cavalcante, M. C. B. (2004). Ascenção do gás natural no mercado de combustíveis automotivos no Brasil. 3o Congresso Brasileiro de P&D Em Patróleo e Gás. Natal: ABPG, p. 1-5.
Cezário, W. R.; Antunes, A. M. de S.,;Leite, L. F. and Menezes, R. P. B. de. (2015). The energy revolution in the USA and the pre-salt reserves in Brazil: Risks and opportunities for the Brazilian petrochemical industry. Futures, v. 73, p. 1–11. DOI: 10.1016/j.futures.2015.07.013
Colombo, S., El Harrack, M. and Sartori, N. (2016). The Future of Natural Gas Markets and Geopolitics. The Netherlands: Lenthe/European Energy Review.
Costa, I. V. L. da; Rochedo, P.; Império, M.; Szklo, A. S. and Schaeffer, R. (2016). Production in Offshore Reservoirs in Brazil’s Pre-salt Region. In P. Grammelis (Ed.), Energy, Transportation and Global Warming. Springer International Publishing. (p. 617–629). DOI: 10.1007/978-3-319-30127-3
DNPM. (2017). Anuário Mineral Brasileiro - Principais Substâncias Metálicas. Available at: <https://www.gov.br/anm/pt-br/centrais-de-conteudo/publicacoes/serie-estatisticas-e-economia-mineral/anuario-mineral/anuario-mineral-brasileiro/amb_metalicos2017> (access in 21/03/2019)
dos Santos, E. M. (2002). Gás natural: estratégias para uma energia nova no Brasil. São Paulo: Annablume.
EPE. (2019). Balanço Energético Nacional 2019 - Relatório Síntese / Ano Base 2018. Available at: <https://www.epe.gov.br/pt/publicacoes-dados-abertos/publicacoes/balanco-energetico-nacional-2019> (access in 03/02/2020)
Firjan. (2017). Quanto custa a energia elétrica para a pequena e média indústria no Brasil? <https://www.solrico.com/fileadmin/solrico/media/doc/pdf_presentations/sistema-firjan-2016.pdf> (access in 19/10/2019)
Fraga, D. M. (2019). A movimentação de gás natural comprimido e liquefeito em pequena escala: as fronteiras de competitividade do modal rodoviário. Instituto de Energia e Ambiente, Universidade de São Paulo. São Paulo. DOI: 10.11606/D.106.2019.tde-19122018-092510
Fraga, D. M.; Liaw, C. and Gallo, A. de B. (2017). Techninal visits to LNG Import Terminals from ENAGAS at Cartagena in Spain and from REN Atlantico, at Sines in Portugal.
Gallo, A. de B. (2018). Avaliação da inserção do gás natural no setor industrial brasileiro: uma análise de indicadores de impactos energético, ambiental e econômico. Instituto de Energia e Ambiente, Universidade de São Paulo. DOI: 10.11606/D.106.2018.tde-09042018-173952
García Kerdan, I.; Jalil-Vega, F.; Toole, J.; Gulati, S.; Giarola, S. and Hawkes, A. (2019). Modelling cost-effective pathways for natural gas infrastructure: A southern Brazil case study. Applied Energy, 255, 113799. DOI: 10.1016/j.apenergy.2019.113799
Hekkert, M. P.; Hendriks, F. H. J. F.; Faaij, A. P. C. and Neelis, M. L. (2005). Natural gas as an alternative to crude oil in automotive fuel chains well-to-wheel analysis and transition strategy development. Energy Policy, v. 33, n. 5, p. 579–594. DOI: 10.1016/j.enpol.2003.08.018
Hondo, H. (2005). Life cycle GHG emission analysis of power generation systems: Japanese case. Energy, v. 30, n. 11–12, p. 2042–2056. DOI: 10.1016/j.energy.2004.07.020
Howarth, R. W. (2014). A bridge to nowhere: methane emissions and the greenhouse gas footprint of natural gas. Energy Science & Engineering, v. 2, n. 2, p. 47–60. DOI: 10.1002/ese3.35
IBGE. (2019). Panorama Mato Grosso. Available at: <https://cidades.ibge.gov.br/brasil/mt/panorama> (access in 30/11/2019).
IGU. (2015). Small Scale LNG: 2012–2015 Triennium Work Report. Available at: <https://www.igu.org/news/igu-world-lng-report-2015-edition/> (access in 13/04/2019)
IMEA. (2019). Agronegócio no Brasil e em Mato Grosso. Available at: <https://www.imea.com.br/imea-site/view/uploads/relatorios-mercado/Apresentacao_20190426.pdf> (access in 12/04/2019)
Kumar, S., Kwon, H.-T., Choi, K.-H., Lim, W., Cho, J. H., Tak, K. and Moon, I. (2011). LNG: An eco-friendly cryogenic fuel for sustainable development. Applied Energy, v. 88, n. 12, p. 4264–4273. DOI: 10.1016/j.apenergy.2011.06.035
Levi, M. (2013). Climate consequences of natural gas as a bridge fuel. Climatic Change, v. 118, n. 3–4, p. 609–623. DOI: 10.1007/s10584-012-0658-3
Liaw, C. (2019). Novas fronteiras de expansão para o gás natural: o suprimento em pequena escala através da malha ferroviária brasileira. Instituto de Energia e Ambiente, Universidade de São Paulo. São Paulo. DOI: 10.11606/D.106.2019.tde-19122018-113127
Matsubara, E. (2016). Release do setor secundário de Mato Grosso. Available at: <http://www.procon.mt.gov.br/documents/363424/3008377/RELEASE+DO+SETOR+SECUND%C3%81RIO+DE+MATO+GROSSO/3f00b378-7e1c-4bbe-878a-4383dfb412a2> (access in 12/04/2019)
MME. (2019a). Boletim Mensal de Acompanhamento da Indústria do Gás Natural (2009-2019). <http://www.mme.gov.br/web/guest/secretarias/petroleo-gas-natural-e-combustiveis-renovaveis/publicacoes/boletim-mensal-de-acompanhamento-da-industria-de-gas-natural> (access in 05/12/2019)
MME. (2019b). Novo mercado de Gás. Available at: <http://www.mme.gov.br/web/guest/conselhos-e-comites/cmgn/novo-mercado-de-gas> (access in 05/05/2019)
MME. (2019c). Relatório do Mercado de Derivados de Petróleo. Available at: <http://antigo.mme.gov.br/web/guest/secretarias/petroleo-gas-natural-e-biocombustiveis/publicacoes/relatorio-mensal-do-mercado-de-derivados-de-petroleo> (access in 06/09/2019)
Mokhatab, S.; Mak, J. Y.; Valappil, J. V. and Wood, D. A. (2014). Handbook of Liquefied Natural Gas. Amsterdam: Elsevier.
Mouette, D.; Machado, P. G.; Fraga, D.; Peyerl, D.; Borges, R. R.; Brito, T. L. F.; Shimomaebara, L. A. and dos Santos, E. M. (2019). Costs and emissions assessment of a Blue Corridor in a Brazilian reality: The use of liquefied natural gas in the transport sector. Science of The Total Environment, v. 668, p. 1104–1116. DOI: 10.1016/j.scitotenv.2019.02.255
Naval, P. (2009). Tabelas de Conversão de Petróleo e Gás. Available at: <http://www.portalnaval.com.br/media/tabela/conversao_petroleo_gas_1.pdf> (access in 08/04/2019).
NIEPE. (2017). Balanço energético do Estado do Mato Grosso e Mesorregiões. Available at: < http://www.sedec.mt.gov.br/documents/195466/2296326/Balan%C3%A7o+Energ%C3%A9tico+do+Estado+de+MT+2015.pdf/eb0fc280-c58b-4dde-8554-13e44594ac5c> (access in 21/05/2019)
Openstreetmap. (2018). Malha rodoviária do openstreetmap. Available at: <http://www.openstreetmap.com.br/> (access in 04/02/2019)
Safari, A.; Das, N.; Langhelle, O.; Roy, J. and Assadi, M. (2019). Natural gas: A transition fuel for sustainable energy system transformation? Energy Science & Engineering, v. 7, n. 4, p. 1075–1094. DOI: 10.1002/ese3.380
Santos, E. M. dos; Fagá, M. T. W.; Barufi, C. B. and Poulallion, P. L. (2007). Gás natural: a construção de uma nova civilização. Estudos Avançados, v. 21, n. 59, p. 67–90. DOI: 10.1590/S0103-40142007000100007
Teixeira, J. P. B. (2015). Gás Natural: O energético mais competititvo. Rio de Janeiro: PoD.
Zhang, X.; Myhrvold, N. P.; Hausfather, Z. and Caldeira, K. (2016). Climate benefits of natural gas as a bridge fuel and potential delay of near-zero energy systems. Applied Energy, v. 167, p. 317–322. DOI: 10.1016/j.apenergy.2015.10.016
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Drielli Peyerl, Denis Martins Fraga, Dorival Suriano dos Santos Júnior, Anna Luisa Abreu Netto, Edmilson Moutinho dos Santos
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who submit papers for publication by TRANSPORTES agree to the following terms:
- Authors retain copyright and grant TRANSPORTES the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors may enter into separate, additional contractual arrangements for the non-exclusive distribution of this journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in TRANSPORTES.
- Authors are allowed and encouraged to post their work online (e.g., in institutional repositories or on their website) after publication of the article. Authors are encouraged to use links to TRANSPORTES (e.g., DOIs or direct links) when posting the article online, as TRANSPORTES is freely available to all readers.
- Authors have secured all necessary clearances and written permissions to published the work and grant copyright under the terms of this agreement. Furthermore, the authors assume full responsibility for any copyright infringements related to the article, exonerating ANPET and TRANSPORTES of any responsibility regarding copyright infringement.
- Authors assume full responsibility for the contents of the article submitted for review, including all necessary clearances for divulgation of data and results, exonerating ANPET and TRANSPORTES of any responsibility regarding to this aspect.