A prediction model of the coefficient of friction for runway using artificial neural network
DOI:
https://doi.org/10.14295/transportes.v29i2.2401Keywords:
Pavements, Airports, Operational safety, MaintenanceAbstract
Runway surface conditions are fundamental to ensure safety during landing and takeoff operations of aircrafts. In this manner, airport operators are required to monitor the coefficient of friction and macrotexture of runways to maintain its safety and plan maintenance and rehabilitation strategies when appropriate, since both these parameters get deteriorated with time. Thus, to assist aerodrome operators and regulatory agencies in the decision-making process for conservation and monitoring of airfield pavements, this study aimed to develop a prediction model for runway friction using Artificial Neural Network. Our results were satisfactory and may contribute to the decision-making process in the context of the Airport Pavement Management System.
Downloads
References
ANAC (2016) Instrução Suplementar – IS No 153.205-001. Agência Nacional de Aviação Civil, Brasília, DF.
ANAC (2019) Regulamento Brasileiro da Aviação Civil (RBAC) no 153 Emenda no 04. Agência Nacional de Aviação Civil, Brasília, DF.
Anupam, K.; S. K. Srirangam; A. Scarpas and C. Kasbergen (2013) Influence of temperature on tire-pavement friction analy-ses. Transportation Research Record, n. 2369, p. 114–124. DOI:10.3141/2369-13
Aps, M. (2006) Classificação da aderência pneu-pavimento pelo índice combinado IFI – International Friction Index para revesti-mentos asfálticos. Tese de Doutorado, Escola Politécnica da Universidade de São Paulo, São Paulo. Disponível em: <https://teses.usp.br/teses/disponiveis/3/3138/tde-11122006-144825/pt-br.php> (acesso em 24/07/2021).
Beckley, M. E. (2016) Pavement Deterioration Modeling Using Historical Roughness Data. Master's Thesis, Arizona State Univer-sity. Disponível em: <https://repository.asu.edu/items/38689> (acesso em 24/07/2021).
Bernucci, L. B.; L. M. G. da Motta; J. A. P. Ceratti and J. B. Soares (2008) Pavimentação asfáltica - Formação Básica para Enge-nheiros. Abeda, Rio de Janeiro.
Bezerra Filho, C. I. F. and F. H. L. de Oliveira (2013) Análise da correlação entre a macrotextura e o coeficiente de atrito em pavimentos aeroportuários. In: XXVII Congresso de Pesquisa e Ensino em Transportes, ANPET, Belém.
Bishop, C. M. (2006) Pattern recognition and machine learning. Springer.
Bocanegra, C. W. R. (2002) Procedimentos para tornar mais efetivo o uso das redes neurais artificiais em planejamento de trans-portes. Dissertação de Mestrado, Escola de Engenharia de São Carlos da Universidade de São Paulo, São Carlos. Disponí-vel em: < https://www.teses.usp.br/teses/disponiveis/18/18137/tde-06032002-131951/publico/C_Bocan.pdf> (aces-so em 24/07/2021).
Bosurgi, G., and F. Trifirò (2005) A model based on artificial neural networks and genetic algorithms for pavement mainte-nance management. International Journal of Pavement Engineering, v. 6, n. 3, p. 201–209. DOI:10.1080/10298430500195432
Celeste, A. B., and F. H. L. de Oliveira (2019) Study of retroanalysis of asphaltic pavements resilience modules with the use of artificial neural networks. Transportes, v. 27, n. 4, p. 123–133. DOI:10.14295/transportes.v27i4.1781
Cerezo, V.; M. T. Do and M. Kane (2012) Comparison of skid resistance evolution models. Seventh International Conference on Maintenance and Rehabilitation of Pavements and Technological Control, Auckland, New Zealand.
Chelliah, T.; P. Stephanos; T. Smith and B. Kochen (2002) Developing a Design Policy to Improve Pavement Surface Charac-teristics. Presented at 82nd Transportation Research Board Annual Meeting, Washington, D.C.
Chen, J. S.; C. C. Huang; C. H. Chen and K. Y. Su (2008) Effect of rubber deposits on runway pavement friction characteristics. Transportation Research Record, n. 2068, p. 119–125. DOI:10.3141/2068-13
FAA (2014) Advisory Circular 150/5380-7B. Airport Pavement Management Program (PMP). Federal Aviation Administration. Washington DC.
Flintsch, G. W.; J. P. Zaniewski and J. Delton (1996) Artificial neural network for selecting pavement rehabilitation projects. Transportation Research Record, n. 1524, p. 185–193. DOI:10.1177/0361198196152400122
Fwa, T. F.; W. T. Chan and C. T. Lim (1997) Decision framework for pavement friction management of airport runways. Journal of Transportation Engineering, v. 123, n. 6, p. 429–435. DOI: 10.1061/(ASCE)0733-947X(1997)123:6(429)
Géron, A. (2017) Hands-On Machine Learning with Scikit-Learn & TensorFlow, 1st ed., O’Reilly.
Haas, R.; W. R. Hudson and L. C. Falls (2015) Pavement Asset Management, 3rd ed, Scrivener Publishing, Beverly.
Haykin, S. (2009) Neural networks and learning machines, 3rd ed, Pearson, Ontario.
Hossain, M. I.; L. S. P. Gopisetti and M. S. Miah (2019) International Roughness Index Prediction of Flexible Pavements Using Neural Networks. Journal of Transportation Engineering, Part B: Pavements, v. 145, n. 1, p. 1–10. DOI:10.1061/JPEODX.0000088.
Lecun, Y.; Y. Bengio and G. Hinton (2015) Deep learning. Nature, v. 521, p. 436–444. DOI:10.1038/nature14539
Masad, E.; A. Rezaei; A. Chowdhury and P. Harris (2009) Texas Transportation Institute. FHWA/TX-09/0-5627-1. Predicting asphalt mixture skid resistance based on aggregate characteristics. Austin.
McDaniel, R. S.; K. J. Kowalski; A. Shah; J. Olek and R. J. Bernhard (2010) Joint Transportation Research Program, Indiana Department of Transportation and Purdue University. FHWA/IN/JTRP-2009/22. Long Term Performance of a Porous Friction Course. West Lafayette. DOI: 10.5703/1288284314284
Oliveira, F. H. L. de. (2009) Proposição de estratégias de manutenção de pavimentos aeroportuários baseadas na macrotextura e no atrito: estudo de caso do Aeroporto Internacional de Fortaleza. Dissertação de Mestrado, Universidade Federal do Ceará, Fortaleza. Disponível em: < http://www.repositorio.ufc.br/handle/riufc/4866> (acesso em: 24/07/2021)
Oliveira, P. V. S. (2017) Estudo preliminar do comportamento da capacidade de atrito nas pistas de pouso e decolagem do Aero-porto Pinto Martins. Monografia, Universidade Federal do Ceará. Disponível em: < http://www.repositorio.ufc.br/handle/riufc/29491> (acesso em: 24/07/2021)
Pinheiro Neto, J. C.; F. H. L. de Oliveira and M. F. P. Aguiar (2015) Análise da correlação linear de parâmetros de aderência em pavimentos aeroportuários: estudo de caso do Aeroporto Internacional Pinto Martins. In: 44 a RAPv – Reunião Anual de Pavimentação e 18o ENACOR – Encontro Nacional de Conservação Rodoviária. Foz do Iguaçu, PR.
Ramos, S. P.; L. C. de Almeida; F. H. L. de Oliveira and M. F. P. Aguiar (2015). Verificação da correlação entre os parâmetros de aderência nas pistas de pousos e decolagens dos aeroportos de Fortaleza/CE, Juazeiro do Norte/CE e Petrolina/PE. In: Congresso Técnico Científico da Engenharia e da Agronomia, CONTECC. Fortaleza.
Ribeiro, A. J. A. (2013) Um método para localização e estimação das características geotécnicas dos solos da Região Metropolita-na de Fortaleza-CE para fins de pavimentação. Dissertação de Mestrado, Universidade Federal do Ceará, Fortaleza. Disponí-vel em: <http://www.repositorio.ufc.br/handle/riufc/5461> (acesso em: 24/07/2021)
Ribeiro, A. J. A., C. A. U. da Silva and S. H. D. A. Barroso (2018) Metodologia de baixo custo para mapeamento geotécnico apli-cado à pavimentação. Transportes, v. 26, n. 2, p. 84–100. DOI:10.14295/transportes.v26i2.1491
Rodrigues Filho, O. S. (2006) Características de aderência de revestimentos asfálticos aeroportuários - Estudo de caso do Aero-porto Internacional de São Paulo/ Congonhas. Dissertação de Mestrado, Escola Politécnica da Universidade de São Paulo. Disponível em: < https://teses.usp.br/teses/disponiveis/3/3138/tde-01122006-142419/pt-br.php> (acesso em: 24/07/2021)
Santos, A.; E. Freitas; S. Faria; J. R. M. Oliveira and A. M. A. C. Rocha (2014) Degradation Prediction Model for Friction in High-ways. In: Murgante B. et al. (eds) Computational Science and Its Applications – ICCSA 2014. ICCSA 2014. Lecture Notes in Computer Science, v. 8581. Springer, Cham. DOI:10.1007/978-3-319-09150-1_44
Shahin, M. Y. (2005) Pavement Management for Airports, Roads, and Parking Lots, 2nd ed., Springer, New York.
Silva, J. P. S. (2008) Aderência Pneu-Pavimento em revestimentos asfálticos aeroportuários. Dissertação de Mestrado, Universi-dade de Brasília, Brasília, DF. Disponível em: < https://repositorio.unb.br/handle/10482/3470> (acesso em: 24/07/2021)
Skerritt, W. H. (1993) Aggregate type and traffic volume as controlling factors in bituminous pavement friction. Transporta-tion Research Record, n. 1418, p. 22–29.
Susanna, A.; M. Crispino; F. Giustozzi and E. Toraldo (2017) Deterioration trends of asphalt pavement friction and roughness from medium-term surveys on major Italian roads. International Journal of Pavement Research and Technology, v. 10, n. 5, p. 421–433. DOI:10.1016/j.ijprt.2017.07.002
Wambold, J. C.; C. R. Antle; J. J. Henry and Z. Rado (1995) International PIARC experiment to compare and harmonize texture and skid resistance measurements. PIARC World Road Association, Paris, France.
Yang, G.; Q. J. Li; Y. Zhan; Y. Fei and A. Zhang (2018) Convolutional Neural Network-Based Friction Model Using Pavement Texture Data. Journal of Computing in Civil Engineering, v. 32, n. 6, p. 1–10. DOI:10.1061/(ASCE)CP.1943-5487.0000797
Yao, L.; Q. Dong; J. Jiang and F. Ni (2019) Establishment of Prediction Models of Asphalt Pavement Performance based on a Novel Data Calibration Method and Neural Network. Transportation Research Record, v. 2673, n. 1, p. 66–82. DOI:10.1177/0361198118822501
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 José Breno Ferreira Quariguasi, Francisco Heber Lacerda de Oliveira, Saulo Davi Soares e Reis
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who submit papers for publication by TRANSPORTES agree to the following terms:
- Authors retain copyright and grant TRANSPORTES the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors may enter into separate, additional contractual arrangements for the non-exclusive distribution of this journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in TRANSPORTES.
- Authors are allowed and encouraged to post their work online (e.g., in institutional repositories or on their website) after publication of the article. Authors are encouraged to use links to TRANSPORTES (e.g., DOIs or direct links) when posting the article online, as TRANSPORTES is freely available to all readers.
- Authors have secured all necessary clearances and written permissions to published the work and grant copyright under the terms of this agreement. Furthermore, the authors assume full responsibility for any copyright infringements related to the article, exonerating ANPET and TRANSPORTES of any responsibility regarding copyright infringement.
- Authors assume full responsibility for the contents of the article submitted for review, including all necessary clearances for divulgation of data and results, exonerating ANPET and TRANSPORTES of any responsibility regarding to this aspect.