Effects of drivers evasive behavior on the placement of automated enforcement equipment in highway systems

Authors

  • Lucas Franceschi Universidade Federal de Santa Catarina https://orcid.org/0000-0003-1486-1357
  • Gustavo Garcia Otto Universidade Federal de Santa Catarina
  • Luciano Kaesemodel Universidade Federal de Santa Catarina
  • Amir Mattar Valente Universidade Federal de Santa Catarina

DOI:

https://doi.org/10.14295/transportes.v28i5.2233

Keywords:

Transportation systems. Enforcement. Location. Evasion. Flow capture.

Abstract

The placement of automated enforcement equipment on highways is a problem of interest for many roadway infrastructure entities and law enforcement agencies. It is common that in such cases the vehicles actively try to evade enforcement, because this allows them to continue to earn profit with illegal transportation and avoid the punishment of the law. If this is not considered in the planning stages of enforcement systems, drivers can easily avoid the enforcement with the aid of route planning software. This paper seeks to investigate how such behavior changes where the enforcement equipment should be located on highway networks, by firstly reviewing how this problem has been solved in literature and then experimenting with one of the main mathematical models. The results showed that accounting for evasive behavior when locating enforcement equipment does not significantly increase the number of monitored sections that are necessary but rather optimizes their location in order to cover all the possible paths between all source-destination pairs (within a defined maximum detour from the shortest path). If planning is done without considering evasive behavior and vehicles do show this behavior, then the system may be ineffective for enforcement. On the other hand, if this tendency to avoid enforcement is considered in planning, which is greater than that shown by real vehicles, then all vehicles will be successfully captured by enforcement, without resulting in an excessive increase in cost.

Downloads

Download data is not yet available.

Author Biographies

Lucas Franceschi, Universidade Federal de Santa Catarina

Laboratório de Transportes e Logística

Gustavo Garcia Otto, Universidade Federal de Santa Catarina

Laboratório de Transportes e Logística

Luciano Kaesemodel, Universidade Federal de Santa Catarina

Laboratório de Transportes e Logística

Amir Mattar Valente, Universidade Federal de Santa Catarina

Laboratório de Transportes e Logística

References

AlGadhi, S. A. H. (2002). “Optimizing Truck Weigh Stations’ Locations on the Highway Network of Saudi Arabia.” Journal of King Saud University - Engineering Sciences, v. 14, n. 2, p. 147–163. DOI: 10.1016/S1018-3639(18)30750-5.

Ammarapala, V.; T. Chinda; P. Udomworarat; T. Rongwiriyapanich; A. Khampanit; S. Suanmali, e Samphanwattanachai, B. (2013). “Selection of weigh station locations in Thailand using the analytic hierarchy process.” Songklanakarin Journal of Science and Technology, v. 35, n. 1, p. 81–90.

Arslan, O.; O. Jabali e G. Laporte (2018). “Exact Solution of the Evasive Flow Capturing Problem.” Operations Research, v. 66, n.6, p.1625–1640. DOI: 10.1287/opre.2018.1756.

Cottrell Jr., B. H. (1992). The Avoidance of Weigh Stations in Virginia by Overweight Trucks. Virginia Transportation Research Council, Charlottesville.

Benekohal, R. F.; Y. M. El-Zohairy e S. Wang (2011). “Truck Travel Time Around Weigh Stations: Effects of Weigh in Motion and Automatic Vehicle Identification Systems.” Transportation Research Record, v. 3, n. 2, p. 1712–1719. DOI: 10.3141/1716-16.

Berman, O.; R. C. Larson e N. Fouska (1992). “Optimal Location of Discretionary Service Facilities.” Transportation Science, INFORMS, v. 26, n. 3, p. 201–211. DOI: 10.1287/trsc.26.3.201.

Boonmee, C.; M. Arimura e T. Asada (2017). “Facility location optimization model for emergency humanitarian logistics.” International Journal of Disaster Risk Reduction, Elsevier Ltd, v. 24, p. 485–498. DOI: 10.1016/j.ijdrr.2017.01.017.

Colson, B.; P. Marcotte e G. Savard (2007). “An overview of bilevel optimization.” Annals of Operations Research, v. 153, n. 1, p. 235–256. DOI: 10.1007/s10479-007-0176-2.

Cunagin, W.; W. A. Mickler e C. Wright (1997). “Evasion of Weight-Enforcement Stations by Trucks.” Transportation Research Record: Journal of the Transportation Research Board, v. 1570, n.1, p. 181–190. DOI: 10.3141/1570-21.

Forrest, J.; T. Ralphs; S. Vigerske; LouHafer; B. Kristjansson; Jpfasano; EdwinStraver; M. Lubin; H. G. Santos; Rlougee e M. Saltzman (2018). “Coin-Or/Cbc: Version 2.9.9.” Zenodo. DOI: 10.5281/zenodo.1317566.

Gendreau, M.; G. Laporte e I. Parent (2000). “Heuristics for the Location of Inspection Stations on a Network.” Naval Research Logistics, v. 47, n. 4, p. 287–303. DOI: 10.1002/(SICI)1520-6750(200006)47:4<287::AID-NAV2>3.0.CO;2-R.

Ghisolfi, V.; G. M. Ribeiro; G. L. D. Chaves; R. F. Orrico Filho; I. C. S. Hoffmann e L. R. Perim (2019). “Evaluating Impacts of Overweight in Road Freight Transportation: A Case Study in Brazil with System Dynamics.” Sustainability, v. 11, p. 3128. DOI: 10.3390/su11113128.

González, P. H.; G. Climaco; G. R. Mauri; B. L. Vieira; G. M. Ribeiro; R. D. Orrico Filho; L. Simonetti; L. R. Perim e I. C. S. Hoffmann (2019). “New approaches for the traffic counting location problem.” Expert Systems with Applications, v. 132, p. 189-198. DOI: 10.1016/j.eswa.2019.04.068.

Hodgson, M. J. (1990). “A Flow-Capturing Location-Allocation Model.” Geographical Analysis, v. 22, n. 3, p. 270–279. DOI: 10.1111/j.1538-4632.1990.tb00210.x.

Hodgson, M. J.; K. E. Rosing; A. Leontien e G. Storrier (1996). “Applying the flow-capturing location-allocation model to an authentic network: Edmonton, Canada.” European Journal of Operational Research, v. 90, n. 3, p. 427–443. DOI: 10.1016/0377-2217(95)00034-8.

Hongli, G.; L. Juntao e G. Hong (2011). “A survey of bilevel programming model and algorithm.” Proceedings - 2011 4th International Symposium on Computational Intelligence and Design, ISCID 2011, v. 2, p. 199–203. DOI: 10.1109/ISCID.2011.151.

Hooshmand, F. e S. A. MirHassani (2018) “An Effective Bilevel Programming Approach for the Evasive Flow Capturing Location Problem.” Networks and Spatial Economics, Springer Nature America, Inc., v. 18, n.4, p. 909–935. DOI: 10.1007/s11067-018-9415-0.

Jacob, B. e V. F. L. Beaumelle (2010). “Improving truck safety: Potential of weigh-in-motion technology.” IATSS Research, v. 34, n. 1, p. 9–15. DOI: 10.1016/j.iatssr.2010.06.003.

Kulović, M.; Z. Injac; S. Davidović e I. Posavac (2018). “Modelling Truck Weigh Stations’ Locations based on Truck Traffic Flow and Overweight Violation: A Case Study in Bosnia and Herzegovina.” PROMET - Traffic&Transportation, v. 30, n. 2, p. 163–171. DOI: 10.7307/ptt.v30i2.2423.

Liu, K.; Q. Li e Z. H. Zhang (2019). “Distributionally robust optimization of an emergency medical service station location and sizing problem with joint chance constraints.” Transportation Research Part B: Methodological, Elsevier Ltd, v. 119, p. 79–101. DOI: 10.1016/j.trb.2018.11.012.

Lu, C. C.; S. Yan; H. C. Ko e H. J. Chen (2018). “A Bilevel Model With a Solution Algorithm for Locating Weigh-In-Motion Stations.” IEEE Transactions on Intelligent Transportation Systems, Institute of Electrical and Electronics Engineers (IEEE), v. 19, n. 2, p. 380–389. DOI: 10.1109/TITS.2017.2696046.

Lu, J.; J. Han; Y. Hu e G. Zhang (2016). “Multilevel decision-making: A survey.” Information Sciences, Elsevier Inc., v. 346–347, p. 463–487. DOI: 10.1016/j.ins.2016.01.084.

Mahmoudabadi, A. e S. M. Seyedhosseini (2013). “Improving the efficiency of weigh in motion systems through optimized allocating truck checking oriented procedure.” IATSS Research, v. 36, n. 2, p. 123–128. DOI: 10.1016/j.iatssr.2012.08.002.

Marković, N.; I. O. Ryzhov e P. Schonfeld (2015). “Evasive flow capture: Optimal location of weigh-in-motion systems, tollbooths, and security checkpoints.” Networks, Wiley-Blackwell, v. 65, n. 1, p. 22–42. DOI: 10.1002/net.21581.

Marković, N.; I. O. Ryzhov e P. Schonfeld (2017). “Evasive flow capture: A multi-period stochastic facility location problem with independent demand.” European Journal of Operational Research, Elsevier B.V., v. 257, n. 2, p. 687–703. DOI: 10.1016/j.ejor.2016.08.020.

Mirchandani, P. B.; R. Rebello e A. Agnetis (1995). “The Inspection Station Location Problem In Hazardous Material Transportation: Some Heuristics And Bounds.” INFOR: Information Systems and Operational Research, v. 33, n. 2, p. 100–113. DOI: 10.1080/03155986.1995.11732271.

MirHassani, S. A. e R. Ebrazi (2012). “A Flexible Reformulation of the Refueling Station Location Problem.” Transportation Science, v. 47, n. 4, p. 617–628. DOI: 10.1287/trsc.1120.0430.

Mitchell, S.; M. O’Sullivan e I. Dunning (2011). “PuLP: A Linear Programming Toolkit for Python.” Department of Engineering Science, The University of Auckland.

Šelmić, M.; N. Bešinović e D. Teodorović (2011). “Locating weigh-in-motion checkpoints in traffic networks using genetic algorithm.” E-Society Journal, v. 2, p. 55–66.

Šelmić, M.; D. Teodorović e K. Vukadinovic (2010). “Locating inspection facilities in traffic networks: An artificial intelligence approach.” Transportation Planning and Technology, v. 33, n. 6, p. 481–493. DOI: 10.1080/03081060.2010.505047

Stackelberg, H. V. (1952). The Theory of the Market Economy. Oxford University Press.

Strathman, J. G. e G. Theisen (2002). Weight enforcement and evasion: Oregon case study.

Transportation Research Board. (1990). Truck Weight Limits: Issues and Options. Transportation Research Board. DOI: 10.17226/11349

Xiang, R.; G. Lu e D. He (2010). “Simulated annealing algorithm for solving A bi-level optimization model on high-speed railway station location.” ICIC 2010 - 3rd International Conference on Information and Computing, IEEE, v. 2, n. 1, p. 159–162. DOI: 10.1109/ICIC.2010.134

Yan, G. e Z. Shuzhi (2012). “A Study of Distribution Center Location and Transport Routes Optimization Based on Supply Chain.” World Automation Congress, IEEE, p. 4–7.

Yang, H. e J. Zhou (1998). “Optimal traffic counting locations for origin–destination matrix estimation.” Transportation Research Part B: Methodological, v. 32, n. 2, p. 109–126. DOI: 10.1016/S0191-2615(97)00016-7

Yen, J. Y. (1971). “Finding the K Shortest Loopless Paths in a Network.” Management Science, v. 17, n. 11, p. 712–716.

Yildiz, B.; O. Arslan e O. E. Karaşan (2016). “A branch and price approach for routing and refueling station location model.” European Journal of Operational Research, v. 248, n. 3, p. 815–826. DOI: 10.1016/j.ejor.2015.05.021

Downloads

Published

2020-12-15

How to Cite

Franceschi, L., Otto, G. G., Kaesemodel, L., & Valente, A. M. (2020). Effects of drivers evasive behavior on the placement of automated enforcement equipment in highway systems. TRANSPORTES, 28(5), 235–251. https://doi.org/10.14295/transportes.v28i5.2233

Issue

Section

Artigos