Strength and durability parameters of a cemented sedimentary silt for application in paving

Authors

DOI:

https://doi.org/10.14295/transportes.v28i5.2106

Keywords:

Soil-cement. Durability. Strength. Guabirotuba Formation. Paving.

Abstract

This paper presents the strength and durability parameters of sedimentary silt from Curitiba (Brazil) stabilized with cement for potential use in paving. Splitting tensile strength, unconfined compressive strength and loss of mass against wetting and drying cycles (W/D) were researched in the laboratory using greenish-gray silt (originating from one of the horizons of the Guabirotuba Formation - Paraná) and high-early strength Portland cement- ARI (CPV). Cement contents (C) of 3, 5, 7 and 9% were used, molding dry unit weights (γd) of 14, 15 and 16 kN/m3, curing times (t) of 7, 14 and 28 days, and fixed moisture content (ω) of 23%. The results demonstrate that with the increase of the cement content and the curing time, there is a gain of strength, microstructure improvement, and a decrease in the accumulated mass loss (ALM) and the initial porosity (η) of the compacted mixtures. The porosity/volumetric cement content ratio (η/Civ) was used to determine the minimum amount of cement necessary to stabilize the soil according to the parameters of strength and durability. Finally, C=5% by weight is the minimum content that satisfies the requirements for potential soil use in the sub-base.

Downloads

Download data is not yet available.

References

ABNT (1995). NBR 6502: Rochas e solos. Associação Brasileira de Normas Técnicas, Rio de Janeiro, RJ.

ABNT (2007). NBR 5739 - Concreto - Ensaios de Compressão de Corpos de Prova Cilíndricos. Associação Brasileira de Normas Técnicas, Rio de Janeiro, RJ.

ABNT (2011). NBR 7222: Concreto e argamassa — Determinação da resistência à tração por compressão diametral de corpos de prova cilíndricos. Associação Brasileira de Normas Técnicas, Rio de Janeiro, RJ.

ABNT (2016a). NBR 6459: Solo - Determinação do limite de liquidez. Associação Brasileira de Normas Técnicas, Rio de Janeiro, RJ.

ABNT (2016b). NBR 7180: Solo — Determinação do limite de plasticidade. Associação Brasileira de Normas Técnicas, Rio de Janeiro, RJ.

ABNT (2016c). NBR 7182 - Solo - Ensaio de Compactação. Associação Brasileira de Normas Técnicas, Rio de Janeiro, RJ.

ABNT (2017). NBR 16605: Cimento Portland e outros materiais em pó — Determinação da massa específica. Associação Brasileira de Normas Técnicas, Rio de Janeiro, RJ.

AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION OFFICIALS. (1982). AASHTO Materials, Part I, Specifications, Washington, D.C.

ASTM (2011a). ASTM D2487 - Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). ASTM International, (August), 1–16.

ASTM (2011b). ASTM D 2487 - 11 Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). ASTM International, West Conshohocken, Pa, D5521-5, 1–5.

ASTM (2011c). ASTM C 496/C 496M - 11 Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete. ASTM International, West Conshohocken, Pa, 1–5.

ASTM (2014). ASTM D 854 - 14 Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer 1. ASTM International, West Conshohocken, Pa.

ASTM (2015). ASTM D559/D559M Standard Test Methods for Wetting and Drying Compacted Soil-Cement Mixtures. ASTM International, West Conshohocken, Pa, 1–6.

BALDOVINO, J. A. (2018). Comportamento mecânico de um solo siltoso da formação geológica Guabirotuba tratado com cal em diferentes tempos de cura. Dissertação de Mestrado em Engenharia Civil. Universidade Tecnológica Federal do Paraná.

BALDOVINO, J. A., MOREIRA, E. B., IZZO, R. L. DOS S., AND ROSE, J. L. (2018a). Empirical Relationships with Unconfined Compressive Strength and Split Tensile Strength for the Long Term of a Lime-Treated Silty Soil. Journal of Materials in Civil Engineering, 30(8), 6018008. DOI: 10.1061/(ASCE)MT.1943-5533.0002378

BALDOVINO, J. A., MOREIRA, E. B., TEIXEIRA, W., IZZO, R. L. S., AND ROSE, J. L. (2018b). Effects of lime addition on geotechnical properties of sedimentary soil in Curitiba, Brazil. Journal of Rock Mechanics and Geotechnical Engineering, 10(1), 188–194. DOI: 10.1016/j.jrmge.2017.10.001

BALDOVINO, J. DE J. A., IZZO, R. L. DOS S., PEREIRA, M. D., ROCHA, E. V. DE G., ROSE, J. L., AND BORDIGNON, V. R. (2020a). Equations Controlling Tensile and Compressive Strength Ratio of Sedimentary Soil–Cement Mixtures under Optimal Compaction Conditions. Journal of Materials in Civil Engineering, 32(1), 4019320. DOI: 10.1061/(ASCE)MT.1943-5533.0002973

BALDOVINO, J. DE J. A., MOREIRA, E. B., CARAZZAI, É., ROCHA, E. V. DE G., DOS SANTOS IZZO, R., MAZER, W., AND ROSE, J. L. (2019). Equations controlling the strength of sedimentary silty soil–cement blends: influence of voids/cement ratio and types of cement. International Journal of Geotechnical Engineering, 1–14. DOI: 10.1080/19386362.2019.1612134

BALDOVINO, J. DE J. A., IZZO, R., ROSE, J. L., AVANCI, M. (2020b). Geopolymers Based on Recycled Glass Powder for Soil Stabilization. Geotech Geol Eng.Online DOI:10.1007/s10706-020-01274-w

BALDOVINO, J. J. A., AND IZZO, R. DOS S. (2019). Relação porosidade/cimento como parâmetro de controle na estabilização de um solo siltoso. COLLOQUIUM EXACTARUM, 11(1), 89–100. DOI: 10.5747/ce.2019.v11.n1.e269

BUNAWAN, A. R., MOMENI, E., ARMAGHANI, D. J., NISSA BINTI MAT SAID, K., AND RASHID, A. S. A. (2018). Experimental and intelligent techniques to estimate bearing capacity of cohesive soft soils reinforced with soil-cement columns. Measurement, 124, 529–538. DOI: 10.1016/j.measurement.2018.04.057

CHEN, C., ZHANG, G., ZORNBERG, J. G., MORSY, A. M., ZHU, S., AND ZHAO, H. (2018). Interface behavior of tensioned bars embedded in cement-soil mixtures. Construction and Building Materials, 186, 840–853. DOI: 10.1016/j.conbuildmat.2018.07.211

CHOMPOORAT, T., MAIKHUN, T., AND LIKITLERSUANG, S. (2019). Cement-improved lake bed sedimentary soil for road construction. Proceedings of the Institution of Civil Engineers: Ground Improvement, 172(3), 192–201. DOI: 10.1680/jgrim.18.00076

CONSOLI, N. C., MARQUES, S. F. V., FLOSS, M. F., AND FESTUGATO, L. (2017a). Broad-spectrum empirical correlation determining tensile and compressive strength of cement-bonded clean granular soils. Journal of Materials in Civil Engineering, 29(6), 1–7. DOI: 10.1061/(ASCE)MT.1943-5533.0001858

CONSOLI, N. C., QUIÑÓNEZ, R. A., GONZÁLEZ, L. E., AND LÓPEZ, R. A. (2017b). Influence of Molding Moisture Content and Porosity/Cement Index on Stiffness, Strength, and Failure Envelopes of Artificially Cemented Fine-Grained Soils. Journal of Materials in Civil Engineering, 29(5), 4016277. DOI: 10.1061/(ASCE)MT.1943-5533.0001819

DEPARTAMENTO NACIONAL DE INFRAESTRUTURA DE TRANSPORTES. (2010). Pavimentação – Base de solo-cimento. DNIT 143-10. DNIT.

DEPARTAMENTO DE TRANSPORTES DE TEXAS (2013). (TxDOT) test procedure for soil-cement testing. Tex-120-E, Austin, TX.

DIAMBRA, A., IBRAIM, E., PECCIN, A., CONSOLI, N. C., AND FESTUGATO, L. (2017). Theoretical Derivation of Artificially Cemented Granular Soil Strength. Journal of Geotechnical and Geoenvironmental Engineering, 143(5), 4017003. DOI: 10.1061/(ASCE)GT.1943-5606.0001646

DNER. (1989). Classificação de solos tropicais segundo a metodologia MCT. DNER – M 196. Departamento de Estradas e Rodagem.

DNER. (1994). Solos compactados com equipamento miniatura – determinação da perda de massa por imersão – método de ensaio. DNER-ME 256. Departamento de Estradas e Rodagem.

FAN, J., WANG, D., AND QIAN, D. (2018). Soil-cement mixture properties and design considerations for reinforced excavation. Journal of Rock Mechanics and Geotechnical Engineering, 10(4), 791–797. DOI: 10.1016/j.jrmge.2018.03.004

FAROUK, A., AND SHAHIEN, M. M. (2013). Ground improvement using soil–cement columns: Experimental investigation. Alexandria Engineering Journal, 52(4), 733–740. DOI: 10.1016/j.aej.2013.08.009

FESTUGATO, L., MENGER, E., BENEZRA, F., KIPPER, E. A., AND CONSOLI, N. C. (2017). Fibre-reinforced cemented soils compressive and tensile strength assessment as a function of filament length. Geotextiles and Geomembranes, 45(1), 77–82. DOI: 10.1016/j.geotexmem.2016.09.001

FORCELINI, M., GARBIN, G. R., FARO, V. P., AND CONSOLI, N. C. (2016). Mechanical Behavior of Soil Cement Blends with Osorio Sand. Procedia Engineering, 143, 75–81. DOI: 10.1016/j.proeng.2016.06.010

GHADIR, P., AND RANJBAR, N. (2018). Clayey soil stabilization using geopolymer and Portland cement. Construction and Building Materials, 188, 361–371. DOI: 10.1016/j.conbuildmat.2018.07.207

GOODARY, R., LECOMTE-NANA, G. L., PETIT, C., AND SMITH, D. S. (2012). Investigation of the strength development in cement-stabilised soils of volcanic origin. Construction and Building Materials, 28(1), 592–598. DOI: 10.1016/j.conbuildmat.2011.08.054

HORPIBULSUK, S., CHINKULKIJNIWAT, A., CHOLPHATSORN, A., SUEBSUK, J., AND LIU, M. D. (2012). Consolidation behavior of soil–cement column improved ground. Computers and Geotechnics, 43, 37–50. DOI: 10.1016/j.compgeo.2012.02.003

HORPIBULSUK, S., RACHAN, R., CHINKULKIJNIWAT, A., RAKSACHON, Y., AND SUDDEEPONG, A. (2010). Analysis of strength development in cement-stabilized silty clay from microstructural considerations. Construction and Building Materials, 24(10), 2011–2021. DOI: 10.1016/j.conbuildmat.2010.03.011

JAN, O. Q., AND MIR, B. A. (2018). Strength Behaviour of Cement Stabilised Dredged Soil. International Journal of Geosynthetics and Ground Engineering, 4(2). DOI: 10.1007/s40891-018-0133-y

KORMANN, A. C. M. (2002). Comportamento Geomecânico da Formação Guabirotuba: Estudos de Campo e Laboratório. Tese de Doutorado. Universidade de São Paulo. DOI: 10.11606/T.3.2002.tde-20072009-092526

MOREIRA, E. B., BALDOVINO, J. A., ROSE, J. L., AND LUIS DOS SANTOS IZZO, R. (2019). Effects of porosity, dry unit weight, cement content and void/cement ratio on unconfined compressive strength of roof tile waste-silty soil mixtures. Journal of Rock Mechanics and Geotechnical Engineering, 11(2), 369–378. DOI: 10.1016/j.jrmge.2018.04.015

NEMATZADEH, M., ZARFAM, P., AND NIKOO, M. (2017). Investigating laboratory parameters of the resistance of different mixtures of soil – lime – fume using the curing and administrative method. Case Studies in Construction Materials, 7, 263–279. DOI: 10.1016/j.cscm.2017.08.002

PORTLAND CEMENT ASSOCIATION, PCA. (1992). Soil-cement laboratory handbook. Skokie, IL: Portland Cement Association.

RIOS, S., DA FONSECA, A. V., CONSOLI, N. C., FLOSS, M., & CRISTELO, N. (2013). Influence of grain size and mineralogy on the porosity/cement ratio. Géotechnique Lett 2013,3:130–6. DOI: 10.1680/geolett.13.00003

SIRIVITMAITRIE, C., PUPPALA, A. J., SARIDE, S., AND HOYOS, L. (2011). Combined Lime–Cement Stabilization for Longer Life of Low-Volume Roads. Transportation Research Record: Journal of the Transportation Research Board, 2204(1), 140–147. DOI: 10.3141/2204-18

YAGHOUBI, M., ARULRAJAH, A., DISFANI, M. M., HORPIBULSUK, S., DARMAWAN, S., AND WANG, J. (2019). Impact of field conditions on the strength development of a geopolymer stabilized marine clay. Applied Clay Science, 167, 33–42. DOI: 10.1016/j.clay.2018.10.005

Published

2020-12-15

How to Cite

Baldovino, J. de J. A., Izzo, R. L. dos S., Rose, J. L., & da Silva, Érico R. (2020). Strength and durability parameters of a cemented sedimentary silt for application in paving. TRANSPORTES, 28(5), 117–135. https://doi.org/10.14295/transportes.v28i5.2106

Issue

Section

Artigos