Development of transfer function for crack area prediction in asphaltic pavements by fatigue damage simulation using S-VECD model and elastic analysis

Authors

DOI:

https://doi.org/10.14295/transportes.v28i3.1900

Keywords:

Design. Asphaltic pavements. Fatigue. Damage. Percentage cracked area.

Abstract

The evolution of materials characterization methods and of the amount of materials tested nationwide in the past decades made it possible to organize a road pavements database. These are essential information for pavement design with transfer functions that allow performance prediction from computational modeling. The main objective of this work is to develop a transfer function associating laboratory fatigue damage characterization data to surface cracked area observed in field. The tools used were the asphalt stiffness, characterized by the complex modulus, and the fatigue life, characterized by the integrity curve (C vs S) and the failure envelope (GR vs Nf), and associated with multilayer elastic analysis and a reduced damage variable. Calculated damage evolution results were used to predict field observations of percent cracked areas. In a calibration phase using 27 test sections, it was possible to obtain a unique transfer function between laboratory predictions (in terms of calculated damage) and field observations (in Terms of percent cracked area). The validation of the transfer function was performed with 17 other sections. Through 2 pavement design examples, it was observed an important aspect of the conventional definition of the average reduced damage variable, especially in the prediction of pavements with surface course greater then 15cm.

Downloads

Download data is not yet available.

Author Biographies

Lucas Feitosa de A. L. Babadopulos, Universidade Federal do Cariri, Ceará – Brasil

PhD, Universidade de Lyon/ENTPE

MSc, Eng. Civil, Universidade Federal do Ceará

Master, Ecole Central de Nantes

 

Professor Adjundo-A, Departamento de Engenharia Estrutural e Construção Civil (DEECC), Centro de Tecnologia, Universidade Federal do Ceará. Campus do Pici s/n Bloco 733, CEP: 60440-554. Fortaleza, CE, Brasil

Jorge Barbosa Soares, Universidade Federal do Cariri, Ceará – Brasil

Professor Titular
Departamento de Engenharia de Transportes
Universidade Federal do Ceará
Fortaleza-CE

References

AASHTO TP 107 (2014) Determining the damage characteristic curve of asphalt concrete from direct tension cyclic fatigue tests. American Association of State Highway and Transportation Officials, Provisional Standard TP 107, Washington, DC.

ALMEIDA JR, P. O.; F. D. BOEIRA; L. P. SPECHT; T. C. CERVO; D. S. PEREIRA; R. CENTOFANTE; V. S. BARBOZA JR; C. F. C. SILVA (2018) Avaliação laboratorial do tipo e teor de ligante e da granulometria na deformação permanente de misturas asfál-ticas. Revista Transportes. Rio de Janeiro. v. 26, n. 2, p. 1-15. DOI: 10.14295/transportes.v26i2.1407.

BATISTA, J. B. S.; L. F. A. L. BABADOPULOS; J. B. SOARES (2017) Relationship between multiple stress creep recovery (MSCR) binder test results and asphalt concrete rutting resistance in Brazilian roadways. Construction and Building Materials, v. 145, p. 20–27. DOI: 10.1016/j.conbuildmat.2017.03.216.

BENEVIDES, S.A.S. (2000) Análise Comparativa dos Métodos de Dimensionamento de Pavimentos Asfálticos: Empírico do DNER e da Resiliência da COPPE/UFRJ em Rodovias do Estado do Ceará. 2000. Dissertação de Mestrado. Universidade Federal do Rio de Janeiro. Rio de Janeiro.

BIOT, M.A. (1955) Dynamics of Viscoelastic Anisotropic Media. In: Midwestern Conference on Solid Mechanics. Engineering, 4., 2006, Lafayette, USA. Proceedings [...]. Lafayette: Experiment Station. v. 129.

FRANCO, F.A.C.P. (2007) Método de Dimensionamento Mecanístico-Empírico de Pavimentos Asfálticos – SISPAV. Tese de Doutorado. Universidade Federal do Rio de Janeiro. Rio de Janeiro.

FRITZEN, M.A. (2016) Desenvolvimento e Validação de Função de Transferência para Previsão de Dano por Fadiga em Pavimentos Asfálticos. Tese de Doutorado. Universidade Federal do Rio de Janeiro. Rio de Janeiro.

HOLANDA, A.S.; E. PARENTE Jr.; T. D. P. ARAÚJO; L. T. B. MELO; F. EVANGELISTA Jr.; J. B. SOARES, (2006). Finite Element Model-ing of Flexible Pavements. In: Iberian Latin-American Congress on Computational Methods in Engineering (CILAMCE), 27, 2006, Belém, Pará. Proceedings [...]. Belém, Pará. p. 1-14.

INMET (2017) Normais Climatológicas do Brasil 1961-1990. Instituto Nacional de Meteorologia. Ministério da Agricultura Pecuária e Abastecimento. Brasília, DF. Disponível em: http://www.inmet.gov.br/portal/index.php?r=clima/normaisClimatologicas. Acesso em: 19 jun. 2017.

KERTÉSZ, I.; T. LOVAS; A. BARSI, (2008) Photogrammetric pavement detection system. In: INTERNATIONAL SOCIETY FOR PHOTOGRAMMETRY AND REMOTE SENSING, 21., 2008, Beijing, China. Proceedings […]. Beijing, China: IAPRS. v. 27, n. B5, p. 897-902. Disponível em: https://www.isprs.org/proceedings/XXXVII/congress/5_pdf/156.pdf. Acesso em: 04 mar. 2017.

LAPAV (2011) PROJETO DE PESQUISA CONCEPA – LAPAV “Estudo de Desempenho de Pavimento Experimental com objetivo de validar método racional de dimensionamento de Pavimentos flexíveis”. Laboratório de Pavimentação Escola de Enge-nharia – UFRGS. Porto Alegre, RS.

MOTTA, L.M.G. (1991) Método de Dimensionamento de Pavimentos Flexíveis; Critério de Confiabilidade e Ensaios de Cargas Repetidas. Tese de Doutorado. Universidade Federal do Rio de Janeiro, Rio de Janeiro.

NASCIMENTO, L.A.H. (2008) Nova Abordagem da Dosagem de Misturas Asfálticas Densas com Uso do Compactador Giratório e Foco na Deformação Permanente. Dissertação de Mestrado. Universidade Federal do Rio de Janeiro. Rio de Janeiro.

NASCIMENTO, L.A.H. (2015a) Implementation and Validation of the Viscoelastic Continuum Damage Theory for Asphalt Mixture and Pavement Analysis in Brazil. Tese de Doutorado. North Carolina State University. Raleigh-USA.

NASCIMENTO, L.A.H. (2015b) Implementação e Validação da Teoria do Dano Contínuo Viscoelástico para a Análise de Misturas e Pavimentos Asfálticos no Brasil. Asfalto em Revista. Rio de Janeiro. n. 42. p. 1 -25.

PARK, S. W.; KIM, Y. R.; SCHAPERY, R. A. (1996) Viscoelastic continuum damage model and its application to uniaxial behavior of asphalt concrete. Mechanics of Materials. v. 24, n. 4, p. 241-255. DOI: 10.1016/S0167-6636(96)00042-7.

RTA (2010) Manual de Execução de Trechos Monitorados. Rede Temática de Tecnologia em Asfalto. Rio de Janeiro: Petrobras SA.

SANTIAGO, L.S.; TORQUATO E SILVA, S.A.; SOARES, J.B. (2018) Determinação do dano em pavimentos asfálticos por meio da combinação do modelo S-VECD com análises elásticas. Revista Transportes. Rio de Janeiro. v. 26, n. 2, p. 31-43. DOI: 10.14295/transportes.v26i2.1446.

SCHAPERY, R.A. (1984). Correspondence Principles and a Generalized J-integral for Large Deformation and Fracture Analysis of Viscoelastic Media. International Journal of Fracture, v. 25, p. 195-223. DOI: 10.1007/BF01140837.

SCHEFFY, C.; COETZEE, N.; DIAZ, E. (1999) Asphalt Concrete Fatigue Crack Monitoring and Analysis Using Digital Image Analysis Techniques. In: Accelerated Pavement Testing 1999 International Conference. Reno-USA. 1., 1999, Reno, USA.

Proceedings […]. Reno, EUA: APT. p. 1-21. Disponível em: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.61.4478&rep=rep1&type=pdf. Acesso em: 04 mar. 2017.

Published

2020-08-31

How to Cite

Santiago, L. da S., Babadopulos, L. F. de A. L., & Soares, J. B. (2020). Development of transfer function for crack area prediction in asphaltic pavements by fatigue damage simulation using S-VECD model and elastic analysis. TRANSPORTES, 28(3), 121–136. https://doi.org/10.14295/transportes.v28i3.1900

Issue

Section

Artigos