Análise de deformações específicas de tração na fibra inferior de revestimento asfáltico através de instrumentação e métodos numéricos

Authors

  • Nielson Tôrres Neves de Carvalho Universidade Federal de Sergipe
  • Fernando Silva Albuquerque Universidade Federal de Sergipe

DOI:

https://doi.org/10.14295/transportes.v27i2.1579

Keywords:

Instrumentation, Numerical models, Tensile strain.

Abstract

Numerical analyzes of stress, strains and displacements resulting from vehicle traffic for pavement designs is usual, but may lead inaccuracies, causing oversizing or undersizing of pavement layers. On the other hand, the measurement of data by instrumentation on the pavement tends to provide greater accuracy. Among the main mechanical responses, the critical tensile strain on the bottom of the asphalt layers is related to the fatigue process. In this work, it was carried out a measurement of the tensile strain by the H-Gage sensor, comparing to the numerical analyzes by modeling the elastic multilayers and finite element methods. Both numerical models presented very different estimates of the wearing course measurements, where the greater difference was in the fatigue life predictions. The elastic multilayers method tended to estimate shorter fatigue life, while the proposed finite element model tended to estimate longer fatigue life, as the friction between layers was reduced.

Downloads

Download data is not yet available.

References

Abu-Farsakh, M.; J. Gu; G. Voyuadjis e Q. Chen (2014) Mechanical-empirical Analysis of the Results of Finite Element Analysis on Flexible Pavement with Geogrid Base Reinforcement. Internacional Journal of Pavement Engineering, v. 15, n. 9, p. 786-798. DOI: 10.1080/10298436.2014.893315.

ASTM (2015) ASTM E1876-09: Standard Test Method for Dynamic Young's Modulus, Shear Modulus, and Poisson's Ratio by Impulse Excitation of Vibration. American Society for Testing and Materials, West Conshohocken, PA.

Balbo, J. T. (2007) Pavimentação Asfáltica: materiais, projeto e restauração. Oficina de Textos, 588 p.

Bastos, J. B. dos (2016) Considerações sobre a Deformação Permanente de Pavimentos Asfálticos no Dimensionamento Mecanístico-Empírico. Tese (doutorado). Programa de Pós-Graduação em Engenharia de Transportes, Universidade Federal do Ceará, Fortaleza, CE.

Beskou, N. D.; S. V. Tsinopoulos e D. D. Theodorakopoulos (2015) Dynamic Elastic Analysis of 3-D Flexible Pavements under Moving Vehicles: A unified FEM treatment. Soil Dynamics and Earthquake Engineering, v. 82, p. 63-72. DOI: 10.1016/j.soildyn.2015.11.013.

Bernucci, L. B.; L. M. G. da Motta; J. A. P. Ceratti e J. B. Soares (2010) Pavimentação Asfáltica: Formação Básica para Engenheiros. Associação Brasileira das Empresas Distribuidoras de Asfalto, Rio de Janeiro, RJ.

Boussinesq, J. (1885) Application des Potentiels a l’étude de l’equilibreet du Mouvement des Solids Elastiques, Gauthier-Villars, Paris.

Burmister, D. M. (1945a) The General Theory of Stresses and Displacements in Layered Systems I. Journal of Applied Physics, v. 16, n. 2, p. 89-94. DOI: 10.1063/1.1707558.

Burmister, D. M. (1945b) The General Theory of Stresses and Displacements in Layered Soil Systems II. Journal of Applied Physics, v. 16, n. 3, p. 126-127. DOI: 10.1063/1.1707562.

Calderón, W. R. e M. R. P. Muños (2015) Three-dimensional Modeling of Pavement with Dual Load Using Finite Element. Dyna, v. 82, n. 189, p. 30-38. DOI: 10.15446/dyna.v82n189.41872.

CONTRAN (1998) Resolução nº 12, de 06 de fevereiro de 1998. Conselho Nacional de Trânsito, Brasília, DF.

CONTRAN (2015) Resolução nº 526, de 20 de abril de 2015. Conselho Nacional de Trânsito, Brasília/DF.

Costa, G. M. (2017) Método de ressonância por impacto: Obtenção de curvas mestras de módulo dinâmico e ângulo de fase em misturas asfálticas brasileiras. Dissertação (mestrado). Programa de Pós-Graduação em Engenharia Civil, Universidade Federal de Sergipe, São Cristóvão, SE.

Deusen, D. A. V; D. E. Newcomb e J. F. Labuz (1992) A Review of Instrumentation Technology for the Minnesota Road Research Project. Research Administration and Development Section Office of Materials and Research Minnesota Department of Transportation. Minnesota.

DNIT (2006) DNIT. 031/2006 – ES. Pavimentos Flexíveis - Concreto asfáltico – Especificação de Serviço. Diretoria de Planejamento e Pesquisa, Departamento Nacional de Infraestrutura de Transportes, Rio de Janeiro, RJ.

DNIT (2008) Identificação de Sistemas de Pesagem em Movimento: Projeto de Instrumentação para Medição de Deformação do Pavimento. Departamento Nacional de Infraestrutura de Transportes, Santa Catarina.

Dong, Z.; Y. Tan; S. Li e L. Cao (2012) Rutting Mechanism Analysis of Heavy-duty Asphalt Pavement Based on Pavement Survey, Finite Element Simulation, and Instrumentation. Journal of Testing and Evaluation, v. 40, n. 7, p. 1-10. DOI: 10.1520/JTE20120162.

Elseifi, M. A.; M. A. Mohammad e Z. J. Zhang (2012) Assessment of Stress and Strain Instrumentation in Accelerated-Pavement Testing. International Journal of Pavement Research and Technology, v. 5, n. 2, p. 121-127. DOI: 10.6135/ijprt.org.tw/2012.5(2).121.

Franco, F. A. (2007) Método de Dimensionamento Mecanístico-Empírico de Pavimentos Asfálticos: Sispav. Tese (doutorado). COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ.

Fritzen, M. A. (2016) Desenvolvimento e Validação de Função de Transferência para Previsão do Dano por Fadiga em Pavimentos Asfálticos. Tese (doutorado). COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ.

Gonçalves, F. P. (2002) Estudo do Desempenho de Pavimentos Flexíveis a Partir de Instrumentação e Ensaios Acelerados. Tese (doutorado). Programa de Pós-Graduação em Engenharia Civil, UFRGS, Porto Alegre.

Holanda, A. S.; E. Parente Jr.; T. D. P. Araújo; L. T. B. Melo; F. Evangelista Jr. e J. B. Soares (2006) Finite Element Modeling of Flexible Pavements. In: Iberian Latin- American Congress on Computational Methods in Engineering (CILAMCE), Anais. Belém, PA.

Ioannides, A. M. e L. Khazanovich (1998) General formulation for multilayered pavement systems. Journal of Transportation Engineering, v. 124, n. 1, p. 82-90. DOI: 10.1061/(ASCE)0733-947X(1998)124:1(82).

Kim, Y. R.; C. Baek; B. S. Underwood; V. Subramanian; M. N. Guddati e K. Lee. (2008) Application of Viscoelastic Continuum Damage Model Based Finite Element Analysis to Predict the Fatigue Performance of Asphalt Pavements. KSCE Journal of Civil Engineering, v. 12, p. 109-120. DOI: 10.1007/s12205-008-0109-x.

Kyowa (2011) Strain Gages. KYOWA Eletronic Instruments CO LTD.

Leiva-Villacorta, F. e D. H. Timm (2012) Simulating the effects of instrumentation on measured pavement response. In: Jones, D.; J. Harvey; A. Mateos e I. Al-Qadi. Advances in Pavement Design through Full-scale Accelerated Pavement Testing. Taylor & Francis Group, p. 153-161. DOI: 10.1201/b13000-23.

Li, Y.; E. Onodera e A. Chiba (2010) Friction Coefficient in Hot Compression of Cylindrical Sample. Materials Transactions, v. 51, n. 7, p. 1210-1215. DOI: 10.2320/matertrans.M2010056.

Madenci, E. e I. Guven (2006) The Finite Element Method and Applications in Engineering Using ANSYS®. Springer.

Matos, L. J. S. (2015) Análise de Tensões Verticais em Estrutura de Pavimento Semirrígido Instrumentado Sob Carregamento Variado. Dissertação (mestrado). Programa de Pós-Graduação em Engenharia Civil, Universidade Federal de Sergipe, São Cristóvão, SE.

Nascimento, L. A. H. (2015) Implementation and Validation of the Viscoelastic Continuum Damage Theory for Asphalt Mixture and Pavement Analysis in Brazil. North Carolina State University.

Nakasone, Y.; S. Yoshimoto e T. A. Stolarski (2006) Engineering Analysis with ANSYS Software. Butterworth-Heinemann.

NCHRP/TRB (2004) Guide for Mechanistic-Empirical Design of New and Rehabilitated Pavement Structures, Appendix RR: Finite Element Procedures for Flexible Pavement Analysis. Illinois.

Pelletier, H.; J. Krierb e C. Gauthiera (2011) Influence of local friction coefficient and strain hardening on the scratch resistance of polymeric surfaces investigated by finite element modeling. Procedia Engineering, v. 10, p. 1772-1778. DOI: 10.1016/j.proeng.2011.04.295.

Saevarsdottir, T. e S. Erlingsson (2016) Deformation Modelling of Instrumented Flexible Pavement Structure. Procedia Engineering, v. 143, p. 937-944. DOI: 10.1016/j.proeng.2016.06.076.

SAPEM (2014) South African Pavement Engineering Manual. The South African National Roads Agency Ltd.

Silva, S. de A. T. e; J. B. dos S. Bastos e J. B. Soares (2015) Influência da aderência na análise de pavimentos asfálticos. In: 44ª Reunião Anual de Pavimentação, 18º Encontro Nacional de Conservação Rodoviária, Anais. Foz do Iguaçu, PR.

Souza, F. V. e J. B. Soares (2003) Considerações sobre Módulo Resiliente e Módulo Dinâmico em Misturas Asfálticas com Base na Teoria da Viscoelasticidade. In: Congresso Ibero-Latinoamericano do Asfalto, Anais, Quito.

Teixeira, V. F.; F. V. de Souza e J. B. Soares (2007) Modelagem da Vida de Fadiga e do Acúmulo de Deformações Permanentes em Pavimentos Asfálticos por Meio de um Modelo de Dano Contínuo. Revista Transportes, v. 15, n. 2. DOI: 10.14295/transportes.v15i2.32.

Trzepieciński, T. e H. G. Lemu (2015) Proposal for an Experimental-Numerical Method for Friction Description in Sheet Metal Forming. Journal of Mechanical Engineering, v. 61(2015)6, p. 383-391. DOI: 10.5545/sv-jme.2015.2404.

Yoder, E. J. e M. W. Witczak, (1975) Principles of pavement design. John Wiley & Sons, New York, NY.

Published

2019-08-31

How to Cite

Carvalho, N. T. N. de, & Albuquerque, F. S. (2019). Análise de deformações específicas de tração na fibra inferior de revestimento asfáltico através de instrumentação e métodos numéricos. TRANSPORTES, 27(2), 56–72. https://doi.org/10.14295/transportes.v27i2.1579

Issue

Section

Artigos