Correlação da energia de fratura com parâmetros reológicos de ligantes e más$ques asfál$cos

Authors

  • Vivian Silveira dos Santos Bardini Instituto de Ciência e Tecnologia - Universidade Estadual Paulista - UNESP
  • Luis Miguel Gutiérrez Klinsky Centro de Pesquisas Rodoviárias – CCR Nova Dutra
  • José Leomar Fernandes Júnior Universidade de São Paulo - Escola de Engenharia de São Carlos
  • Reynaldo Roque Universidade da Flórida

DOI:

https://doi.org/10.14295/transportes.v26i1.1150

Keywords:

Mineral filler, Asphaltic mastic, Rheological properties, Fracture energy.

Abstract

The fracture energy is a property related to the contribu$on of asphalt binders to the fa$gue resistance of asphalt mixtures and therefore has great influence on the mechanical behavior of flexible pavements, par$cularly in the development and propaga$on of cracks. This research aims to contribute to a beLer understanding of the effects of mineral fillers on the fa$gue cracking of asphalt mixtures, at intermediate temperatures, through the Binder Fracture Energy (BFE) test, developed at the University of Florida, with determina$on of the fracture energy as a func$on of the type and content of mineral fillers and asphalt binder. The results show that the fracture energy can be related to the dynamic shear modulus (G *) and phase angle (δ), obtained from tests in the dynamic shear rheometer (DSR), and with the s$ffness [S (t)] and the relaxa$on modulus [m (t)], obtained from tests in the bending beam rheometer (BBR). Howevver, all correla$ons are weak, reinforcing the hypothesis that the best way to predict the fa$gue performance of an asphalt is using fundamental proper$es, like the fracture energy.

Downloads

Download data is not yet available.

References

Anderson, D.A. e R. Dongre (1995) The SHRP Direct Tension Specification Test – Its Development and Use. Physical Properties of Asphalt Cement Binders, J.C. Hardin, Ed. ASTM Special Technical Publication 1241.

American Society for Testing and Ma-terials, Philadelphia, PA, p. 51-66.

Anderson, D. A.; L. Lapalu; M.O. Marasteanu; Y. M. L. Hir; J. P. Planche e D. Martin (2001) Low-temperature thermal cracking of asphalt binders as ranked by strength and fracture properties, Journal of the Transportation Research Board, v. 1766, p.1-6.

Bahia, H.; H. Wen e C.M. Johnson (2010) Developments in intermediate temperature binder specifications. Transportation Research Circular, E-C147, December, p.25-33.

Hoare, T. R. e S.A. Hesp (2000) Low-temperature fracture testing of asphalt binders, Journal of the Transportation Research Board, v. 1728, p.36-42.

Huang, S. C.; J. C. Petersen; R. E. Robertson e J. F. Branthaver (2001) Effect of Hydrated Lime on the Long-Term Oxidative Aging Characteristics of Asphalt. Transportation Research Record

Huang, S.C.; J. C. Petersen; R. E. Robertson e J. F. Branthaver (2002) Effect of hydrated lime on long-term oxidative aging characteristics of asphalt. Transportation Research Record, n. 1810, p. 17-24.

Huang, S. C e M. ZENG (2007) Characterization of aging effect on rheological properties of asphalt-filler systems. International Journal of Pavement Engineering, v. 8, n. 3, p. 213–223

Ishai, I. e J. Craus (1977) Effects of the Filler on Aggregate-Bitumen Adhesion Properties in Bituminous Mixtures. Proceedings of the Association of Asphalt Paving Technologists, v. 46, p. 228-258.

Kim, Y.R.; D.N. LITTLE e I. Song (2003) Effect of mineral fillers on fatigue resistance and fundamental material characteristics – mechanic evaluation. Transportation Research Record, no.1832, Transportation Research Board of the National Acade-mies Washington, D.C., p. 1-8.

Koh, C. e R. Roque (2010) Use of Nonuniform Stress-State Tests to Determine Fracture Energy of Asphalt Mixtures Accura-tely. Transportation Research Record: Journal of the Transportation Research Board, No. 2181, Transportation Research Bo-ard of the National Academies, Washington, D.C., p. 55–66.

Pinilla, A. (1965) O sistema fíler-betume, algumas considerações sobre sua importância nas misturas densas. Conselho Nacional de Pesquisa. Instituto de Pesquisas Rodoviárias.

Ponniah, J.E.; R.A. Cullen e S. A. Hesp (1996) Fracture energy specifications for modified asphalts. Preprints of Papers, Jour-nal Volume 41, Journal Issue 4, Conference 212, National meeting of the American Chemical Society (ACS), Orlando, FL, USA, p. 25-30 August 1996.

Romeo, E. (2008) Measurement and Prediction of Fundamental Tensile Failure Limits Of Hot Mix Asphalt (HMA). Doctoral disser-tation. University of Florida, Gainesville, FL.

Roque, R.; G. Lopp; W. Li e T. Niu (2009) Evaluation of Hybrid Binder Use In Surface Mixtures In Florida. Final report for FDOT BD-545 Contract, University of Florida, Gainesville, FL.

Roque, R.; T. Niu e G. Loop (2012) Development of a Binder Fracture Test to Determine Fracture Energy. Final report for FDOT BDK-75-977-27 Contract, University of Florida, Gainesville, FL.

Walker, Dwight (2017) Refining Superpave asphalt binder characterization. Asphalt: The Magazine of the Asphalt Institute. Nota técnica. Disponível em: http://asphaltmagazine.com/refining-superpave-asphalt-binder-characterization/. (Aces-sado em 01 de junho de 2017)

Published

2018-04-30

How to Cite

Bardini, V. S. dos S., Klinsky, L. M. G., Fernandes Júnior, J. L., & Roque, R. (2018). Correlação da energia de fratura com parâmetros reológicos de ligantes e más$ques asfál$cos. TRANSPORTES, 26(1), 1–15. https://doi.org/10.14295/transportes.v26i1.1150

Issue

Section

Artigos