Avaliação dos impactos de veículos autônomos na capacidade de rodovias no Brasil pelo método de equivalência veicular do HCM-6

Autores

DOI:

https://doi.org/10.14295/transportes.v29i2.2444

Palavras-chave:

Veículos autônomos, Capacidade, HCM-6, CAF, Simulação, Fator de equivalência veicular

Resumo

Este artigo analisa os fatores que afetam os impactos dos veículos autônomos (AVs) na capacidade de uma autoestrada no Brasil adaptando o método usado no HCM-6 para obter equivalentes veiculares de caminhões. Uma versão do Vissim, recalibrada para representar veículos convencionais e AVs em rodovias brasileiras, foi usada para simular mais de 25.000 cenários, representando combinações de características do tráfego (frotas de AVs, pelotões de AVs, porcentagem de AVs e de caminhões) e da via (rampas e número de faixas). O impacto dos AVs foi avaliado através do coeficiente de ajuste da capacidade (CAF) e um modelo para estimar o valor do CAF com base nas variáveis de controle foi ajustado e validado. Os resultados sugerem acréscimos na capacidade de até 30%, com 60% de AVs capazes de formar pelotões. Análises estatísticas mostram que os fatores mais significativos neste aumento de capacidade são a fração de AVs no tráfego e a proporção de AVs capazes de formar pelotões.

Downloads

Não há dados estatísticos.

Referências

Al-Kaisy, A. and C. Durbin (2011). Platooning on two-lane two-way highways: An empirical investigation, Procedia – Social and Behavioral Sciences, v. 16, p. 329–339. DOI:10.1016/j.sbspro.2011.04.454

Alkim, T. P., G. Bootsma and S. Hoogendoorn (2007). Field operational test - The assisted driver. Intelligent Vehicles Symposium, p. 1198–1203, Istambul: IEEE. DOI: 10.1109/IVS.2007.4290281

Bethônico, F. C., F. J. Piva and J. R. Setti (2016). Calibração de microssimuladores de tráfego através de medidas macroscópi-cas. Anais do XXX Congresso de Pesquisa e Ensino em Transportes. Rio de Janeiro: ANPET. Available at <http://146.164.5.73:30080/tempsite/anais/documentos/2018/Trafego Urbano e Rodoviario/Trafego em Rodovias II/4_487_AC.pdf> (accessed in 27/3/2021)

Bierstedt, J., A. Gooze, C. Gray, J. Peterman, L. Raykin and J. Walters (2014). Next-generation vehicles effects of on travel de-mand and highway capacity. Technical Report, Fehr and Peers, USA. Available at <https://issuu.com/fehrandpeers/docs/fp_think_next_gen_vehicle_white_paper_final> (accessed in 27/3/2021)

Calvert, S. C., W. J. Schakel and J. W. van Lint (2017). Will automated vehicles negatively impact traffic flow? Journal of Ad-vanced Transportation, v. 17, id 3082781, DOI:10.1155/2017/3082781.

Carvalho, L. G. S. and J. R. Setti (2019). Calibration of the Vissim truck performance model using GPS data. Transportes, v. 27, n. 3, p. 131–143, DOI:10.14295/transportes.v27i3.2042

Dowling, R., G. List, B. Yang, E. Witzke and A. Flannery (2014) Incorporating truck analysis into the Highway Capacity Manual, National Cooperative Freight Research Program (NCFRP) Report 31. Washington: TRB DOI:10.17226/22311

Fries, R., Y. Qi and S. Leight (2017) How many times should I run the model? Performance measure specific findings from VISSIM models in Missouri. In: 96th Annual Meeting of Transportation Research Board. Washington: TRB. Available at <https://trid.trb.org/View/1437256> (accessed in 27/3/2021)

Gorter, M. (2015). Adaptive cruise control in practice a field study and questionnaire into its influence on driver, traffic flows and safety. Master Thesis, Delft. Available at <http://resolver.tudelft.nl/uuid:727070c8-c3c4-469f-a51a-a772ce683fa4>

(accessed in 27/03/2021)

List, G. F., B. Yang and N. M. Rouphail (2015). On the treatment of trucks for analysis of freeway capacity. Transportation Re-search Record, v. 2483, p. 120–129. DOI:10.3141/2483-14

Mahmassani H. S. (2016) Autonomous vehicles and connected vehicle systems: flow and operations considerations. Trans-portation Science, v. 50, n. 4, p. 1140–1162, DOI: 10.1287/trsc.2016.0712.

Makridis, M., K. Mattas, B. Ciuffo, M. A. Raposo, T. Toledo and C. Thiel (2018). Connected and automated vehicles on a freeway scenario. Effect on traffic congestion and network capacity. In 7th Transport Research Arena TRA, Vienna, 13 p. DOI: 10.5281/zenodo.1483132

Marcomini, L. A. and A. L. Cunha (2018). A comparison between background modelling methods for vehicle segmentation in highway traffic videos. arXiv:1810.02835 [cs.CV] – DOI: arXiv abs/1810.02835.

Martin-Gasulla, M., P. Sukennik and J. Lohmiller (2019). Investigation of the impact on throughput of connected autonomous vehicles with headway based on the leading vehicle type. Transportation Research Record, v. 2673, n. 5, p. 617–626. DOI: 0.1177/0361198119839989

Milanés, V. and S. E. Shladover (2014). Modeling cooperative and autonomous adaptive cruise control dynamic responses using experimental data. Transportation Research Part C, v. 48, p. 285–300. DOI: 10.1016/j.trc.2014.09.001

Papadoulis, A., M. Quddus, and M. Imprialou (2019). Evaluating the safety impact of connected and autonomous vehicles on motorways. Accident Analysis & Prevention, v. 124, p. 12–22. DOI:10.1016/j.aap.2018.12.019

PTV (2019). Vissim 11 - User Manual. Technical Report, Karlsruhe.

Shi, Y., Q. He and Z. Huang (2019). Capacity analysis and cooperative lane changing for connected and automated vehicles: entropy-based assessment method. Transportation Research Record, v. 2673, n. 8, p. 485–498. DOI:10.1177/0361198119843474.

Shladover, S. E. (2009). Cooperative (rather than autonomous) vehicle-highway automation systems. IEEE Intelligent Transportation Systems Magazine, v. 1, n. 1, p. 10–19. DOI: 10.1109/MITS.2009.932716

Shladover, S. E., D. Su and X.-Y. Lu (2012). Impacts of cooperative adaptive cruise control on freeway traffic flow. Transporta-tion Research Record, v. 2324, n. 1, p. 63–70. DOI: 10.3141/2324-08

Strand, N, J. Nilsson, I. Karlsson and L. Nilsson (2011). Exploring end-user experiences: self-perceived notions on use of adaptive cruise control systems. IET Intelligent Transport Systems, v. 5, n. 2, p. 134–140. DOI: 10.1049/iet-its.2010.0116

Sukennik, P. (2018). Micro-simulation guide for automated vehicles. PTV – CoExist, Technical Report, available at <https://www.h2020-coexist.eu/wp-content/uploads/2018/11/ D2.5-Micro-simulation-guide-for-automated-vehicles.pdf> (accessed in 27/3/2021)

TRB (2016). Highway Capacity Manual (6th ed.). Washington, D.C.: TRB.

Van Arem, B., C. J. G. Van Driel and R. Visser (2006). The impact of cooperative adaptive cruise control on traffic-flow charac-teristics. IEEE Transactions on Intelligent Transportation Systems, v. 7, n. 4, p. 429–436. DOI: 10.1109/TITS.2006.884615

Vanderwerf, J., S. Shladover and M. A. Miller (2004). Conceptual development and performance assessment for the deployment staging of advanced vehicle control and safety systems. Technical Report. Berkeley: University of California. Available at <https://escholarship.org/content/qt8hg3b55r/qt8hg3b55r.pdf> (visited on 15/3/2021)

Xiao-bao, Y. and Z. Ning (2007). Effects of the Number of Lanes on Highway Capacity, International Conference on Management Science and Engineering, p. 351–356, Harbin: IEEE. DOI: 10.1109/ICMSE.2007.4421872

Zhao, L. and J. Sun (2013). Simulation framework for vehicle platooning and car-following behaviours under connected-vehicle environment. Procedia – Social and Behavioral Sciences, v. 96, p. 914–924. DOI: 10.1016/j.sbspro.2013.08.105

Zhou, J., L. Rilett and E. Jones (2019a). Sensitivity analysis of speed limit, truck lane restrictions, and data aggregation level on the HCM-6 passenger-car equivalent estimation methodology for western U.S. conditions. Transportation Research Rec-ord, v. 2673, n. 11, p. 493–504. DOI: 10.1177/0361198119851451.

Zhou, J., L. Rilett, and E. Jones (2019b). Estimating passenger car equivalent using the HCM-6 PCE methodology on four-lane level freeway segments in western U.S. Transportation Research Record, v. 2673, n. 11, p. 529–545. DOI: 10.1177/0361198119851448

Alessandri, A., A. Di Febbraro, A. Ferrara and E. Punta (1998) Optimal Control of Freeways via Speed Signalling and Ramp Metering. Control Engineering Practice, v. 6, n. 6, p. 771–780. DOI: 10.1016/S0967-0661(98)00083-5.

Downloads

Publicado

24-08-2021

Como Citar

Favero, R., & Setti, J. R. (2021). Avaliação dos impactos de veículos autônomos na capacidade de rodovias no Brasil pelo método de equivalência veicular do HCM-6. TRANSPORTES, 29(2), 2444. https://doi.org/10.14295/transportes.v29i2.2444

Edição

Seção

Artigos