A escolha de não ser discreto: discutindo a utilização de modelos discretos contínuos no transporte de carga

Rodrigo Javier Tapia, Ana Margarita Larranaga, Helena Beatriz Cybis, Gerard de Jong

Resumo


O transporte de carga tem utilizado os modelos herdados do transporte de passageiros e com eles todos seus pressupostos tradicionais. Mas são todos eles válidos? O presente artigo visa discutir sobre um dos pressupostos menos contestados neste processo de modelagem: o da exclusividade mútua das alternativas no contexto do transporte de carga. Para isso, este artigo apresenta uma aplicação de Multiple Discrete Extreme Value Model (MDCEV) para a escolha de modo e porto para os consolidadores de grãos na Argentina. O modelo é desenvolvido a partir de uma pesquisa de Preferência Declarada que permitia a escolha de mais de uma alternativa simultaneamente. A escolha é descrita pelo Tempo de Viagem, Tempo de Espera do Serviço, Preço de venda no porto e Custo do Frete. O MDCEV permitiu obter informação sobre o efeito da saciedade das diferentes alternativas. De esta maneira, o MDCEV pode ser uma ferramenta valiosa para a modelagem de escolhas táticas e estratégicas.


Palavras-chave


MDCEV. Transporte de carga. Modelos de escolha.

Texto completo:

PDF

Referências


Abdelwahab, W. M., e Sargious, M. (1992) Modelling the Demand for Freight Transport: A New Approach. Journal of Transport Economics and Policy, 26(1), 49–70. doi: 10.2307/20052965

Ahn, J., Jeong, G., e Kim, Y. (2008) A forecast of household ownership and use of alternative fuel vehicles: A multiple discrete-continuous choice approach. Energy Economics, 30(5), 2091–2104. DOI: 10.1016/j.eneco.2007.10.003

Arunotayanun, K., e Polak, J. W. (2009) Accounting for Supply Chain Structures in Modelling Freight Mode Choice Behaviour. European Transport Conference, 44(0), 1–19.

Astroza, S., Bhat, P. C., Bhat, C. R., Pendyala, R. M., e Garikapati, V. M. (2018) Understanding activity engagement across weekdays and weekend days: A multivariate multiple discrete-continuous modeling approach. Journal of Choice Modelling, 28(May), 56–70. DOI: 10.1016/j.jocm.2018.05.004

Bhat, C. R. (2005) A multiple discrete-continuous extreme value model: Formulation and application to discretionary time-use decisions. Transportation Research Part B: Methodological, 39(8), 679–707. doi:10.1016/j.trb.2004.08.003

Bhat, C. R. (2008) The multiple discrete-continuous extreme value (MDCEV) model: Role of utility function parameters, identification considerations, and model extensions. Transportation Research Part B: Methodological, 42(3), 274–303. doi:10.1016/j.trb.2007.06.002

Bhat, C. R. (2018) A new flexible multiple discrete–continuous extreme value (MDCEV) choice model. Transportation Research Part B: Methodological, 110, 261–279. doi:10.1016/j.trb.2018.02.011

Bhat, C. R., e Sen, S. (2006) Household vehicle type holdings and usage: An application of the multiple discrete-continuous extreme value (MDCEV) model. Transportation Research Part B: Methodological, 40(1), 35–53. doi:10.1016/j.trb.2005.01.003

Bhat, C. R., Srinivasan, S., e Sen, S. (2006) A joint model for the perfect and imperfect substitute goods case: Application to activity time-use decisions. Transportation Research Part B: Methodological, 40(10), 827–850. doi:10.1016/j.trb.2005.08.004

Binh, N. T. (2017) A Multi-Stage Impact Assessment Method for Freight Transport Management Measures. Technische Universität Darmstadt.

Bonnet, C., e Bouamra-Mechemache, Z. (2016) Organic Label, Bargaining Power, and Profit-sharing in the French Fluid Milk Market. American Journal of Agricultural Economics, 98(1), 113–133. DOI: 0.1093/ajae/aav047

Brooks, M. R., e Trifts, V. (2008) Short sea shipping in North America: Understanding the requirements of Atlantic Canadian shippers. Maritime Policy and Management, 35(2), 145–158. DOI: 10.1080/03088830801956805

Calastri, C., Hess, S., Choudhury, C., Daly, A., e Gabrielli, L. (2017) Mode choice with latent availability and consideration: Theory and a case study. Transportation Research Part B: Methodological, 123, 374–385. doi:10.1016/j.trb.2017.06.016

Chow, J. Y. J., Yang, C. H., e Regan, A. C. (2010) State-of-the art of freight forecast modeling: Lessons learned and the road ahead. Transportation, 37(6), 1011–1030. doi:10.1007/s11116-010-9281-1

Copperman, R. B., e Bhat, C. R. (2007) An analysis of the determinants of children’s weekend physical activity participation. Transportation, 34(1), 67–87. doi:10.1007/s11116-006-0005-5

Daly, A., Hess, S., e Train, K. (2012) Assuring finite moments for willingness to pay in random coefficient models. Transportation, 39(1), 19–31. doi:10.1007/s11116-011-9331-3

Danielis, R., e Marcucci, E. (2007) Attribute cut-offs in freight service selection. Transportation Research Part E: Logistics and Transportation Review, 43(5), 506–515. doi:10.1016/j.tre.2005.10.002

de Bok, M., e Tavasszy, L. (2018) An empirical agent-based simulation system for urban goods transport (MASS-GT). Procedia Computer Science, 130, 126–133. doi:10.1016/j.procs.2018.04.021

de Jong, G., e Ben-Akiva, M. (2007) A micro-simulation model of shipment size and transport chain choice. Transportation Research Part B: Methodological, 41(9), 950–965. doi:10.1016/j.trb.2007.05.002

de Jong, G., Vierth, I., Tavasszy, L., e Ben-Akiva, M. (2013) Recent developments in national and international freight transport models within Europe. Transportation, 40(2), 347–371. doi:10.1007/s11116-012-9422-9

Ellison, R. B., Teye, C., e Hensher, D. A. (2017) Commodity-based heavy vehicle model for Greater Sydney. 5th International Choice Modelling Conference. Cape Town, South Africa.Disponível em: http://www.icmconference.org.uk/index.php/icmc/ICMC2017/paper/view/1226. Acessado em: 05/06/2019

Enam, A., Konduri, K. C., Eluru, N., e Ravulaparthy, S. (2018) Relationship between well-being and daily time use of elderly: evidence from the disabilities and use of time survey. Transportation, 45(6), 1783–1810. doi:10.1007/s11116-017-9821-z

Hendel, I. (1999) Estimating Multiple-Discrete Choice Models: An Application to Computerization Returns Author(s Estimating Multiple-Discrete Choice Models: An Application to Computerization Returns. Review of Economic Studies, 66(66), 423–446. doi:10.1111/1467-937X.00093

Hensher, D., e Figliozzi, M. A. (2007) Behavioural insights into the modelling of freight transportation and distribution systems. Transportation Research Part B: Methodological, 41(9), 921–923. doi:10.1016/j.trb.2007.04.002

Hess, S. e Palma, D. 2019; Apollo: a flexible, powerful and customisable freeware package for choice model estimation and application, Journal of Choice Modelling, Volume 32, September 2019, 100170, doi: 10.1016/j.jocm.2019.100170

Holguín-Veras, J. (2002) Revealed Preference Analysis of Commercial Vehicle Choice Process. Journal of Transportation Engineering, 128(August), 336–346,doi: 10.1061/(ASCE)0733-947X(2002)128:4(336).

Huh, S. Y., Lee, H., Shin, J., Lee, D., e Jang, J. (2018) Inter-fuel substitution path analysis of the korea cement industry. Renewable and Sustainable Energy Reviews, 82(June 2017), 4091–4099. doi:10.1016/j.rser.2017.10.065

Instituto Nacional de Tecnología Agropecuaria. (2009) Análisis de la cadena de soja en Argentina. Proyecto Específico 2742: Economía de las Cadenas Agroalimentarias y Agroindustriales, 119.Disponível em: https://inta.gob.ar/sites/default/files/script-tmp-cadena_soja.pdf. Acesso em: 04/02/2019

Jäggi, B., Weis, C., e Axhausen, K. W. (2013) Stated response and multiple discrete-continuous choice models: Analyses of residuals. Journal of Choice Modelling, 6, 44–59. doi:10.1016/j.jocm.2013.04.005

Jian, S., Rashidi, T. H., e Dixit, V. (2017) An analysis of carsharing vehicle choice and utilization patterns using multiple discrete-continuous extreme value (MDCEV) models. Transportation Research Part A: Policy and Practice, 103, 362–376. doi:10.1016/j.tra.2017.06.012

Johnson, D., e de Jong, G. (2011) Heterogeneous response to transport cost and time and model specification in freight mode and shipment size choice. International Choice Modelling Conference. disponível em: http://www.icmconference.org.uk/index.php/icmc/ICMC2011/paper/view/284. Acesso em 21/05/2019.

Khan, M., e Machemehl, R. (2017a) Commercial vehicles time of day choice behavior in urban areas. Transportation Research Part A: Policy and Practice, 102, 68–83. doi:10.1016/j.tra.2016.08.024

Khan, M., e Machemehl, R. (2017b) Analyzing tour chaining patterns of urban commercial vehicles. Transportation Research Part A: Policy and Practice, 102, 84–97. doi:10.1016/j.tra.2016.08.014

Larranaga, A. M., Arellana, J., e Senna, L. A. (2017) Encouraging intermodality: A stated preference analysis of freight mode choice in Rio Grande do Sul. Transportation Research Part A: Policy and Practice, 102, 202–211. doi:10.1016/j.tra.2016.10.028

Lu, H., Hess, S., Daly, A., e Rohr, C. (2017) Measuring the impact of alcohol multi-buy promotions on consumers’ purchase behaviour. Journal of Choice Modelling, 24(2014), 75–95. doi:10.1016/j.jocm.2016.05.001

McFadden, D. (1973) Conditional logit analysis of qualitative choice behavior. Frontiers in Econometrics. doi:10.1108/eb028592

Mcfaden, D., Winston, C., e Boersch-supan, A. (1986) Joint estimation of freight transportation decisions under non random sampling. Daugherty, A. (Ed.), Analytical Studies in Transport Economics (p. 137–157), Cambridge University Press.

Nogueira, Í. M., e Bertoncini, B. V. (2018) Proposta de método para modelar a geração de viagens intermunicipais de transporte de cargas a partir de dados secundários. 32 Congresso de Pesquisa e Ensino em Transporte da ANPET (p. 2467–2470). Gramado. Disponível em: http://146.164.5.73:30080/tempsite/anais/documentos/2018/Modelos%20e%20Tecnicas%20de%20Planejamento%20de%20Transportes/Modelagem%20Aplicada%20ao%20Transporte%20de%20Carga/5_168_RT.pdf. Acesso em: 07/03/2019

Nurul Habib, K. M., e Miller, E. J. (2008) Modelling daily activity program generation considering within-day and day-to-day dynamics in activity-travel behaviour. Transportation, 35(4), 467–484. doi:10.1007/s11116-008-9166-8

Paleti, R., Copperman, R. B., e Bhat, C. R. (2011) An empirical analysis of children’s after school out-of-home activity-location engagement patterns and time allocation. Transportation, 38(2), 273–303. doi:10.1007/s11116-010-9300-2

Pourabdollahi, Z., Karimi, B., e Mohammadian, A. (2013) Joint Model of Freight Mode and Shipment Size Choice. Transportation Research Record: Journal of the Transportation Research Board, 2378(312), 84–91. doi:10.3141/2378-09

Rashidi, T. H., e Roorda, M. J. (2018) A business establishment fleet ownership and composition model. Transportation, 45(3), 971–987. doi:10.1007/s11116-017-9758-2

Rich, J., Holmblad, P. M., e Hansen, C. O. (2009) A weighted logit freight mode-choice model. Transportation Research Part E: Logistics and Transportation Review, 45(6), 1006–1019. doi:10.1016/j.tre.2009.02.001

Rose, J. M., e Bliemer, Mi. C. J. (2009) Constructing efficient stated choice experimental designs. Transport Reviews, 29(5), 587–617. doi:10.1080/01441640902827623

Shin, J., Hong, J., Jeong, G., e Lee, J. (2012) Impact of electric vehicles on existing car usage: A mixed multiple discrete-continuous extreme value model approach. Transportation Research Part D: Transport and Environment, 17(2), 138–144. doi:10.1016/j.trd.2011.10.004

Sikder, S., e Pinjari, A. R. (2013) The benefits of allowing heteroscedastic stochastic distributions in multiple discrete-continuous choice models. Journal of Choice Modelling, 9(1), 39–56. doi:10.1016/j.jocm.2013.12.003

Spissu, E., Pinjari, A. R., Bhat, C. R., Pendyala, R. M., e Axhausen, K. W. (2009) An analysis of weekly out-of-home discretionary activity participation and time-use behavior. Transportation, 36(5), 483–510. doi:10.1007/s11116-009-9200-5

Tanner, R., e Bolduc, D. (2014) The Multiple Discrete-continuous Extreme Value Model (MDCEV) with Fixed Costs. Procedia - Social and Behavioral Sciences, 111, 390–399. doi:10.1016/j.sbspro.2014.01.072

Tapia, R. J., de Jong, G., Larranaga, A. M., e Cybis Bettella, H. B. (2019) Exploring multiple discreteness in freight transport . A Multiple Discrete Extreme Value Model application for grain consolidators in Argentina. TRB 2019 Annual Meeting (p. 1–16).

Tapia, R. J., dos Santos Senna, L. A., Larranaga, A. M., e Cybis, H. B. B. (2019) Joint mode and port choice for soy production in Buenos Aires province, Argentina. Transportation Research Part E: Logistics and Transportation Review, 121, 100–118. doi:10.1016/j.tre.2018.04.010

Tavasszy, L., e de Jong, G. (2014) Modelling Freight Transport. (L. Tavasszy & G. de Jong, Eds)Modelling Freight Transport. Elsevier Inc.( ISBN: 9780124104006)

Train, K. (2003) Discrete Choice Methods with Simulation. Cambridge University Press, 1–388. doi:10.1017/CBO9780511753930

Vellay, C., e de Jong, G. (2003) A simultaneous SP/RP Analysis of Mode Choice in Freight Transport in the Region Nord-Pas-de-Calais.

Von Haefen, R. H., e Phaneuf, D. J. (2005) Kuhn-Tucker Demand System Approaches To Non-Market Valuation. Applications of Simulation Methods in Enviromental and Resource Economics. Spri.doi: 10.1007/1-4020-3684-1_8

Von Haefen, R. H., Phaneuf, D. J., e Parsons, G. R. (2004) Estimation and Welfare Analysis With Large Demand Systems. Journal of Business and Economic Statistics, 22(2), 194–205. doi:10.1198/073500104000000082

Windisch, E., De Jong, G., Van Nes, R., e Hoogendoom, S. P. (2010) A Disagregate freight transport model of transport chain and shipment size choice. European Transport Conference, (Abdelwahab 1998).Disponível em: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.850.9821&rep=rep1&type=pdf. Acesso em 08/01/2019

Yu, H., Zeng, A. Z., e Zhao, L. (2009) Single or dual sourcing: decision-making in the presence of supply chain disruption risks. Omega, 37(4), 788–800. doi:10.1016/j.omega.2008.05.006




DOI: https://doi.org/10.14295/transportes.v28i4.2398

Métricas do artigo

Carregando Métricas ...

Metrics powered by PLOS ALM


Direitos autorais 2020 Rodrigo Tapia, Ana Larranaga, Helena Beatriz Cybis, Gerard de Jong

TRANSPORTES (ISSN: 2237-1346) é uma publicação da ANPET - Associação Nacional de Pesquisa e Ensino em Transportes (www.anpet.org.br)

 

Licença Creative Commons

Este obra está licenciado com uma Licença Creative Commons Atribuição-NãoComercial-CompartilhaIgual 4.0 Internacional.