Aderência de interface de revestimentos asfálticos reforçados com geossintéticos e diferentes taxas de emulsão

Autores

DOI:

https://doi.org/10.14295/transportes.v30i1.2632

Palavras-chave:

Geossintéticos, Pavimentos, Ligantes asfálticos, Cisalhamento de interface

Resumo

A presente pesquisa avaliou, por meio de ensaios de cisalhamento tipo Leutner, o comportamento de aderência de revestimentos asfálticos reforçados com geossintéticos, avaliando diferentes taxas de emulsão e a relação dos resultados de cisalhamento com as propriedades físicas e mecânicas dos geossintéticos presentes na interface. Para tanto, corpos-de-prova foram extraídos de seções experimentais de campo, onde foram aplicadas 4 taxas de emulsão asfáltica de ruptura rápida (RR-2C) e 3 geocompostos de reforço (PET, PVA e Fibra de vidro). Os resultados mostraram que houve melhor desempenho de resistência ao cisalhamento e módulo de rigidez de interface quanto maior a taxa de emulsão aplicada para todos os geocompostos. Este aumento foi de 129 %, 73% e 146% para interface com geocompostos de reforço de PET, PVA e fibra de vidro, respectivamente. A capacidade de retenção de asfalto dos geossintéticos não esteve relacionada à máxima aderência de interface, uma vez que taxas mais altas foram usadas. As propriedades físicas dos geossintéticos apresentaram influência sobre os resultados de aderência, com destaque para espessura, massa por unidade de área e abertura de malha das geogrelhas presente no geocompostos. Geossintéticos mais rígidos não levaram à maiores valores de aderência de interface, enquanto levaram a um maior módulo de rigidez de interface. A influência do aumento da taxa de ligante foi maior do que a influência das propriedades físicas e mecânicas dos geossintéticos.

Downloads

Não há dados estatísticos.

Biografia do Autor

Matheus Pena da Silva e Silva, Universidade Federal de São Carlos, São Paulo – Brasil

Possui graduação em Engenharia Civil pela Universidade Federal do Amazonas (2015), mestrado em Ciência e Engenharia de Materiais pela Universidade Federal do Amazonas (2017). Doutorando no Programa de Pós-Graduação em Engenharia Civil da Universidade Federal de São Carlos; É membro pesquisador do grupo de pesquisa em geotecnia da UFAM (GEOTEC) e membro do Grupo de Estudos em Geotecnia e Geossintéticos da UFSCar. Atualmente é professor Assistente da Universidade Federal do Amazonas, lotado no departamento de Engenharia Civil da Faculdade de Tecnologia (FT). Desenvolve pesquisa na área de Geotecnia, em especial na busca de novos materiais para pavimentação.

Natália de Souza Correia, Universidade Federal de São Carlos, São Paulo – Brasil

Dra. Natalia de Souza Correia é Professora Adjunta do Departamento de Engenharia Civil e do Programa de Pós-graduação em Engenharia Civil da Universidade Federal de São Carlos (UFSCar). É Engenheira Civil pela UNESP de Ilha Solteira e Mestre em Engenharia Geotécnica pela Universidade de São Paulo (EESC/USP). Doutora em Engenharia Geotécnica pela Universidade de São Paulo (EESC/USP), com período sanduíche na Universidade do Texas em Austin (UTEXAS) e Pós-doutora em Geotecnia pela Universidade de São Paulo (EESC/USP). Tem experiência de ensino e consultoria nas áreas de Engenharia Geotécnica e Pavimentos, e pesquisa temas relacionados à melhoria de solo, modelagem numérica de problemas geotécnicos e desempenho dos geossintéticos em obras ambientais e de infraestrutura de pavimentos. Atualmente coordena projetos de pesquisa com órgãos de fomento como CNPq Universal e FAPESP. É autora de mais de 20 artigos em periódicos e 40 artigos completos em conferências. Atua na Diretoria da Associação Brasileira de Geossintéticos (IGS Brasil) desde 2015 e participa do Comitê Técnico Stabilization (TC-S) da International Geosynthetetics Society (IGS).

Referências

ABNT (2013a) NBR ISO 10319: Geossintéticos - Ensaio de tração faixa larga. Rio de Janeiro: Associação Brasileira de Normas Técnicas.

ABNT (2013b) NBR ISO 9862: Geossintéticos - Amostragem e preparação de corpos de prova para ensaios. Rio de Janeiro: Associação Brasileira de Normas Técnicas.

ABNT (2013c) NBR ISO 9863-1: Geossintéticos - Determinação da espessura a pressões especifi cadas. Rio de Janeiro: Associação Brasileira de Normas Técnicas.

ABNT (2013d) NBR ISO 9864: Geossintéticos - Método de ensaio para determinação da massa por unidade de área de geotêxteis e produtos correlatos. Rio de Janeiro: Associação Brasileira de Normas Técnicas.

ASTM (2014) D6140: Standard Test Method to Determine Asphalt Retention of Paving Fabrics Used in Asphalt Paving for Full-Width Applications. West Conshohocken, PA: American Society for Testing and Materials International. DOI:10.1520/D6140-00R09.2.

Bae, A., Mohammad, L.N., Elseifi, M.A., Button, J. e Patel, N. (2010) Effects of Temperature on Interface Shear Strength of Emulsified Tack Coats and Its Relationship to Rheological Properties, Journal of the Transportation Research Board, 2180(1), pp. 102–109. DOI:10.3141/2180-12.

BS (1999) EN 1542: products and systems for the protection and repair of concrete structures. Brussels: British Standards.

Canestrari, F., Belogi, L., Ferrotti, G. e Graziani, A. (2015) Shear and flexural characterization of grid-reinforced asphalt pavements and relation with field distress evolution, Materials and Structures/Materiaux et Constructions, 48(4), pp. 959–975. DOI:10.1617/s11527-013-0207-1.

Canestrari, F., Ferrotti, G., Lu, X., Millien, A., Partl, M.N., Petit, C., Phelipot-Mardelé, A., Piber, H. e Raab, C. (2013) Mechanical Testing of Interlayer Bonding in Asphalt Pavements in Partl, M.N., Bahia, H.U., Canestrari, F., de la Roche, C., Di Benedetto, H., Piber, H. e Sybilski, D. (eds.) Advances in Interlaboratory Testing and Evaluation of Bituminous Materials. Dordrecht: Springer, pp. 303–360. DOI:10.1007/978-94-007-5104-0_6.

Canestrari, F., Ferrotti, G., Partl, M.N. e Santagata, E. (2005) Advanced testing and characterization of interlayer shear resistance, Transportation Research Record, (1929), pp. 69–78. DOI:10.3141/1929-09.

Chen, J.S. and Huang, C.C. (2010) Effect of surface characteristics on bonding properties of bituminous tack coat, Transportation Research Record, (2180), pp. 142–149. DOI:10.3141/2180-16.

Collop, A.C., Sutanto, M.H., Airey, G.D. e Elliott, R.C. (2009) Shear bond strength between asphalt layers for laboratory prepared samples and field cores, Construction and Building Materials, 23(6), pp. 2251–2258. DOI:10.1016/j.conbuildmat.2008.11.017.

Correia, N.S. and Mugayar, A.N. (2021) Effect of binder rates and geogrid characteristics on the shear bond strength of reinforced asphalt interfaces, Construction and Building Materials, 269. DOI:10.1016/j.conbuildmat.2020.121292.

DER (2006) ET-DE-P00/043: Tratamento Anti-Reflexão De Trincas Com Geossintético. São Paulo: Departamento de Estradas de Rodagem.

Destrée, A. e De Visscher, J. (2017) Impact of tack coat application conditions on the interlayer bond strength, European Journal of Environmental and Civil Engineering, 8189(March), pp. 1–12. DOI:10.1080/19648189.2017.1285252.

Ge, Z., Wang, H., Zhang, Q. e Xiong, C. (2015) Glass fiber reinforced asphalt membrane for interlayer bonding between asphalt overlay and concrete pavement, Construction and Building Materials, 101, pp. 918–925. DOI:10.1016/j.conbuildmat.2015.10.145.

Lee, S.L., Mannan, M.A. e Wan Ibrahim, W.H. (2020) Shear strength evaluation of composite pavement with geotextile as reinforcement at the interface. Geotextiles and Geomembranes, 48(3), pp. 230–235. DOI:10.1016/j.geotexmem.2019.11.002.

Leutner R (1979) Untersuchung des Schichtverbundes beim bituminösen Oberbau, Bitumen, 41(3), pp. 84–9.

Li, S., Huang, Y. e Liu, Z.H. (2016) Experimental evaluation of asphalt material for interlayer in rigid-flexible composite pavement, Construction and Building Materials, 102, pp. 699–705. DOI:10.1016/j.conbuildmat.2015.10.122.

Nguyen, M.L., Blanc, J., Kerzrého, J.P. e Hornych, P. (2013) Review of glass fibre grid use for pavement reinforcement and APT experiments at IFSTTAR, Road Materials and Pavement Design, 14(SUPPL.1), pp. 287–308. DOI:10.1080/14680629.2013.774763.

Noory, A., Moghadas Nejad, F. e Khodaii, A. (2019) Evaluation of the effective parameters on shear resistance of interface in a geocomposite-reinforced pavement, International Journal of Pavement Engineering, 20(9), pp. 1106–1117. DOI:10.1080/10298436.2017.1394094.

Pasetto, M., Pasquini, E., Giacomello, G. e Baliello, A. (2019) Innovative composite materials as reinforcing interlayer systems for asphalt pavements: an experimental study, Road Materials and Pavement Design, 20(sup2), pp. S617–S631. DOI:10.1080/14680629.2019.1628438.

Raab, C.. e Partl, M.N. (2004) Interlayer shear performance: Experience with different pavement structures, in 3rd Euroasphalt & Eurobitume Congress. Vienna: Foundation Eurasphalt, pp. 535–545.

Raab, C., Partl, M.N. e El Halim, A.E.H.O.A. (2009) Evaluation of interlayer shear bond devices for asphalt pavements, Baltic Journal of Road and Bridge Engineering, 4(4), pp. 186–195. DOI:10.3846/1822-427X.2009.4.186-195.

Rathmayer, H.G. (2007) Reinforcement of Pavements with Steel Meshes and Geosynthetics’ in Correia, A.G., Momoya, Y., e Tatsuoka, F. (eds) Design and Construction of Pavements and Rail Tracks: Geotechnical Aspects and Processed Materials. Balkema: Taylor & Francis, pp. 3–12. DOI: 10.1201/9780203937549.

Sagnol, L., Quezada, J.C., Chazallon, C. e Stöckner, M. (2019) Effect of glass fibre grids on the bonding strength between two asphalt layers and its Contact Dynamics method modelling, Road Materials and Pavement Design, 20(5), pp. 1164–1181. DOI:10.1080/14680629.2018.1439764.

Santagata, F.A.., Partl, M.N.., Ferrotti, G.., Canestrari, F. e Flisch, A. (2008) A. Layer characteristics affecting interlayer shear resistance in flexible pavements, Journal Association of Asphalt Paving Technologists, 77, pp. 221–256.

Sudarsanan, N., Karpurapu, R. e Amrithalingam, V. (2018) An investigation on the interface bond strength of geosynthetic-reinforced asphalt concrete using Leutner shear test, Construction and Building Materials, 186, pp. 423–437. DOI:10.1016/j.conbuildmat.2018.07.010.

Walubita, L.F., Nyamuhokya, T.P., Komba, J.J., Ahmed Tanvir, H., Souliman, M.I. e Naik, B. (2018) Comparative assessment of the interlayer shear-bond strength of geogrid reinforcements in hot-mix asphalt, Construction and Building Materials, 191, pp. 726–735. DOI:10.1016/j.conbuildmat.2018.10.035.

Yang, K. e Li, R. (2021) Characterization of bonding property in asphalt pavement interlayer: A review, Journal of Traffic and Transportation Engineering (English Edition) [Preprint]. DOI:10.1016/j.jtte.2020.10.005.

Yang, L., Roodi, G.H. e Zornberg, J.G. (2019) Development of a Shear Test for Unreinforced and Geosynthetic-Reinforced Hot Mix Asphalt, in Geosynthetics Conference. Houston, Texas, pp. 538–547. Disponível em: < https://www.caee.utexas.edu/prof/zornberg/pdfs/CP/Yang_Roodi_Zornberg_2019.pdf> (acesso em 21/03/2022)

Zhao, H., Cao, J. e Zheng, Y. (2017) Investigation of the interface bonding between concrete slab and asphalt overlay, Road Materials and Pavement Design, 18(sup3), pp. 109–118. DOI:10.1080/14680629.2017.1329866.

Downloads

Publicado

30-04-2022

Como Citar

Genaro Urquiza Júnior, G. ., Pena da Silva e Silva, M. ., & de Souza Correia, N. . (2022). Aderência de interface de revestimentos asfálticos reforçados com geossintéticos e diferentes taxas de emulsão. TRANSPORTES, 30(1), 2632. https://doi.org/10.14295/transportes.v30i1.2632