Análise de desempenho de algoritmos de aprendizagem de máquinas para análise desagregada de viagens intermunicipais

Andreza Dornelas de Souza Roma, Cira Souza Pitombo, Henrique Stramandinoli Guimarães, Luis Henrique Magalhães Costa

Resumo


Este trabalho propõe uma análise desagregada de escolhas de destinos para viagens intermunicipais, por meio da aplicação de algoritmos de Aprendizagem de Máquinas - AM (Classification And Regression Tree - CART e Algoritmos Genéticos - AG). Foi utilizada uma Pesquisa OD, realizada pelo Centro de Estudos de Transportes e Meio Ambiente (UFBA), em 2012/2013 em onze municípios do estado da Bahia. Foi realizada a calibração de um Modelo Logit Multinomial a partir do algoritmo AG, trazendo a vantagem de associação das escolhas dos destinos a valores de coeficientes estimados das funções utilidade aleatórias, sem os problemas relativos à calibração dos modelos logit tradicionais, tais como erros identicamente distribuídos, seguindo a distribuição de Gumbel. O desempenho de cada algoritmo de AM foi comparado à abordagem tradicional (modelo gravitacional).  Os resultados evidenciaram que os algoritmos de AM apresentaram melhores previsões para a escolha de destinos, sendo que o AG apresentou vantagens na obtenção dos parâmetros associados às variáveis independentes. A principal conclusão é que tais algoritmos podem ser aplicados na modelagem de distribuição de viagens, incorporando o efeito das variáveis desagregadas, sem suposições matemáticas rigorosas contidas no ajuste de modelos tradicionais desagregados.


Palavras-chave


Distribuição de viagens; Algoritmos Genéticos; Árvore de Decisão; Modelos Gravitacionais.

Texto completo:

PDF

Referências


Ben-Akiva, M.E.; Lerman, S.R. (1985) Discrete Choice Analysis: Theory and Application to Travel Demand. The MIT Press, Cam-bridge, MA.

Breiman, L.; Friedman, J.H; Olshen, R.A.; Stone, C.J. (1984) Classification and Regression Trees. Wadsworth International Group, Belmont, CA.

Carvalho, A. C. P. L. F.; Galvão, C. O.; Lacerda, E. G. M.; Diniz, L. S.; Valença, M. J. S.; Ludermir, T. B.; Vieira, V. P. P. B. (1999). Siste-mas inteligentes: Aplicações a recursos hídricos e ambientais. Porto Alegre: Editora Universidade/ UFRGS/ ABRH. ISBN 8570255276.

De Grange, L.; Fernández, E.; de Cea, J. (2010) A consolidated model of trip distribution. Transportation Research Part E: Lo-gistics and Transportation Review, v. 46, n. 1, p. 61–75. DOI: 10.1016/j.tre.2009.06.001

De Souza, A. D. (2017); Comparação de algoritmos de Aprendizagem de Máquinas para análise desagregada de viagens intermu-nicipais. 84 f. Dissertação de Mestrado. Departamento de Engenharia de Transporte. Escola de Engenharia de São Carlos.

Fotheringham, A.S. (1983) Some theoretical aspects of destination choice and their relevance to production-constrained gravity models. Environment and Planning A, v. 15, n. 8, p. 1121–1132. DOI: 10.1068/a151121

Ichikawa, S.M., Pitombo, C.S., Kawamoto, E. (2002) Aplicação de Minerador de dados na obtenção de relações entre padrões de viagens encadeadas e características socioeconômicas. Anais do XVI do Congresso de Pesquisa e Ensino em Transportes, Anpet, Natal (RN), v. 2, p. 175-186.

Kass, G.V. (1980) An exploratory technique for investigating large quantities of categorical data. Applied Statistics, v. 29, p. 119–127. DOI: 10.2307/2986296

Kononenko, I; Kukar, M. (2007) Machine Learning and Data Mining: Introduction to Principles and Algorithms. Horwood Pub-lishing. Chichester, UK.

Koppelman, F. S.; Wen, C.H. (2000) The paired combinatorial logit model: properties, estimation and application. Transporta-tion Research Part B: Methodological, v. 34, n. 2, p. 75-89. DOI: 10.1016/S0191-2615(99)00012-0

LaMondia, J.; Snell, T.; Bhat, C.R. (2009) Traveler Behavior and Values Analysis in the Context of Vacation Destination and Travel Mode Choices: A European Union Case Study. Transportation Research Record: Journal of the Transportation Re-search Board, n. 2156, p. 140-149. DOI: 10.3141/2156-16

Marsland, S. (2009) Machine Learning: An Algorithmic Perspective. CRC Press. Cambridge, UK.

Mozolin, M.; Thill, J.C.; Linn, U.E. (2015) Trip distribution forecasting with multilayer perceptron neural networks: A critical evaluation. Transportation Research Part B: Methodological, v. 34, p. 53-73. DOI: 10.1016/S0191-2615(99)00014-4

Omrani, H. (2015) Predicting travel mode of individuals by machine learning. 18th Euro Working Group on Transportation, EWGT 2015, p. 840-849.

Pitombo, C.S.; Kawamoto, E.; Sousa, A.J. (2011) An exploratory analysis of relationships between socioeconomic, land use, activity participation variables and travel patterns. Transport Policy, v. 18, p. 347-357. DOI: 10.1016/j.tranpol.2010.10.010

Pitombo, C.S.; Kawamoto, E.; Sousa, A.J. (2013) Linking activity participation, socioeconomic characteristics, land use and travel patterns: a comparison of industry and commerce sector workers. Journal of Transport Literature, v. 7, p. 59-86. DOI: 10.1590/s2238-10312013000300004

Pitombo, C. S.; De Souza, A.D.; Lindner, A. (2017) Comparing decision tree algorithms to estimate intercity trip distribution. Transportation Research Part C , v. 77, p. 16-32. DOI: 10.1016/j.trc.2017.01.009

Pulugurta S, Arun A, Errampalli M (2013) Use of Artificial Intelligence for Mode Choice Analysis and Comparison with Tradi-tional Multinomial Logit Model, Procedia - Social and Behavioral Sciences, v. 104, p. 583-592. DOI: 10.1016/ j. sbspro.2013.11.152

Quinlan, R. (1983) Learning efficient classification procedures and their application to chess end-games. Machine Learning: An Artificial Intelligence Approach, Tioga, Palo Alto, p. 463-482.

Rasouli, M.; Nikraz, H. (2013) Trip Distribution Modelling Using Neural Network. Transport Research Forum, Brisbane, Aus-tralia.

Wilson, A.A. (1967) Statistical Theory of Spatial Distribution Models. Transportation Research, v. 1, p. 253-269. DOI: 10.1016/0041-1647(67)90035-4

Xie, C.; Lu, J.; Parkany, E. (2003) Work travel mode choice modeling with data mining: decision trees and neural networks. Transportation Research Record: Journal of the Transportation Research Board, n. 1854, p. 50-61. DOI: 10.3141/1854-06

Yang, C.; Tsai, M.; Chang, C, 2014. Investigating the joint choice behavior of intercity transport mode and high-speed rail cabin with a strategy map. Journal of Advanced Transportation. DOI: 10.1002/atr.1264




DOI: https://doi.org/10.14295/transportes.v26i3.1614

Métricas do artigo

Carregando Métricas ...

Metrics powered by PLOS ALM


Direitos autorais 2018 Andreza Dornelas de Souza Roma, Cira Souza Pitombo, Henrique Stramandinoli Guimarães, Luis Henrique Magalhães Costa

Licença Creative Commons
Esta obra está licenciada sob uma licença Creative Commons Atribuição 4.0 Internacional.

TRANSPORTES (ISSN: 2237-1346) é uma publicação da ANPET - Associação Nacional de Pesquisa e Ensino em Transportes (www.anpet.org.br)