Intermittent demand forecasting for aircraft inventories: a study of Brazilian’s Boeing 737NG aircraft´s spare parts management

Jersone Tasso Moreira Silva, Luiz Henrique Santos, Alexandre Teixeira Dias, Hugo Ferreira Braga Tadeu

Resumo


Este estudo tem como objetivo avaliar cinco métodos de previsão para demanda intermitente usando uma série histórica de consumo de peças sobressalentes da aeronave 737 Next Generation, fabricado pela Boeing, da maior frota aérea brasileira gerenciada pela VRG Airline Company S/A. Os métodos de Winter, Croston, Single Exponential Smoothing, Weight Moving Average e Método de Distribuição de Poisson foram testados em um histórico de 53 peças sobressalentes e cada uma delas possui um histórico de demanda de trinta e seis meses (janeiro de 2013 a dezembro de 2015). Os resultados mostraram que os métodos Weight Moving Average, Distribuição de Poisson e Croston apresentaram os melhores ajustes. Além disso, observou-se que a maior parte das demandas por peças sobressalentes apresentaram um padrão smooth ao contrário do resultado obtido pelo estudo de Ghobbar and Friend (2003) que apresentou um padrão lumpy. Por outro lado, tem-se que o Método de Winter apresentou-se como o de pior ajuste em ambos os estudos. Conclui-se que os métodos de Weight Moving Average e Distribuição de Poisson são os mais adequados para avaliar a demanda intermitente para o caso da VRG Airline Company S/A.

Palavras-chave


Demanda intermitente; Boeing 737NG; Peças sobressalentes; Manutenção aeronáutica.

Texto completo:

PDF (English)

Referências


Ahmad Beygi, S.; A. Cohn; Y. Guan e P. Belobaba (2008) Analysis of the potential for delay propagation in passenger airline networks. J. of Air Transp. Manag, v. 14, n. 5, p. 221-236. DOI: 10.1016/j.jairtraman.2008.04.010

ANAC, 2017 http://www.anac.gov.br/assuntos/dados-e-estatisticas/aeronaves. (accessed 2.13.2017).

Botter, R. e L. Fortuin (2000) Stocking strategy for service parts: a case study. International Journal of Operations & Production Management, v. 20, n. 6, p. 656-674. DOI: 10.1108/01443570010321612

Buffa, E. S. (1972) Production-inventory Systems: Planning and Control. Richard D. Erwin, Inc.

Burden, D. (1969) Production inventory systems: Planning and control. J Oper Res Soc., v. 20, n. 2, p 282–283. DOI: 10.1057/jors.1969.65

Croston, J. D. (1972) Forecasting and stock control for intermittent demands. Operational Research Quarterly, v. 23, p. 289-303. DOI: 10.2307/3007885

Dunsmuir, W. T. M. e R. D. Snyder (1989) Control of inventories with intermittent demand. European Journal of Operational Research, v. 40, p. 16-21. DOI: 10.1016/0377-2217(89)90267-1

EAVES, A. (2002) Forecasting for the ordering and stock-holding of consumable spare parts (PhD thesis), Lancaster University, Department of Management Science.

Foote, B. (1993) On the implementation of a control-based forecasting system for aircraft spare parts procurement, IIE Transactions, v. 27, n. 2, p. 210–216. DOI: 10.1080/07408179508936733

Gardner, E. S. (2006) Exponential smoothing: the state of the art—Part II. International Journal of Forecasting, v. 22, n. 4, p. 637-666. DOI: 10.1016/j.ijforecast.2006.03.005

Ghobbar, A. A. e C. H. Friend (2002) Sources of intermittent demand for aircraft spare parts within airline operations. Journal of Air Transport Management, v. 8, n. 4, p. 221–231. DOI: 10.1016/S0969-6997(01)00054-0

Ghobbar, A. A. e C. H. Friend (2003) Evaluation of forecasting methods for intermittent parts demand in the field of aviation: a predictive model. Computers and Operations Research, v. 30, n. 14, p. 2097-2014. DOI: 10.1016/S0305-0548(02)00125-9

Gross, D. (1981) SASPRO II – a spare and server provisioning model. Computers and Operations Research, v. 8, n. 3, p. 197–207. DOI: 10.1016/0305-0548(81)90008-3

Gu, J.; G. Zhang e K. W. Li (2015) Efficient aircraft spare parts inventory management under demand uncertainty. Journal of Air Transport Management, v. 42, p. 101-109. DOI: 10.1016/j.jairtraman.2014.09.006

Hemeimat, R.; L. Al-Qatawneh; M. Arafeh e S. Masoud (2016) Forecasting Spare Parts Demand Using Statistical Analysis. American Journal of Operations Research, v. 6, n. 2, p. 113-120. DOI: 10.4236/ajor.2016.62014

Johnston, F. R. e J. E. Boylan (1996) Forecasting for items with intermittent demand. Journal of the Operational Research Socie-ty, v. 47, n. 1, p. 113–121. DOI: 10.2307/2584256

Kennedy, W. J.; J. W. Patterson e L. D. Fredendall (2002) An Overview of Recent Literature on Spare Parts Inventories. Interna-tional Journal of Production Economics, v. 76, n. 2, p. 201-215. DOI: 10.1016/S0925-5273(01)00174-8

Koehler, A. B.; R. D. Snyder e J. K. Ord (2001) Forecasting models and prediction intervals for the multiplicative Holt-Winters method. International Journal of Forecasting, v. 17, n. 2, p. 269–286. DOI: 10.1016/S0169-2070(01)00081-4

Levén E. e A. Segerstedt (2004) Inventory control with a modified Croston procedure and Erlang distribution. International Journal of Production Economics, v. 90, n. 3, p. 361- 367. DOI: 10.1016/S0925-5273(03)00053-7

Lewis, C. D. (1997) Demand Forecasting and Inventory Control. New York: Wiley.

Lowas III, A. F. e F. W. Ciarallo (2016) Reliability and operations: keys to lumpy aircraft spare parts demand. Journal of Air Transport Management, v. 50, p. 30-40. DOI: 10.1016/j.jairtraman.2015.09.004

Machado, M. C.; M. A. G. E. Araujo; L. M. S. Urbina e F. R. Macau (2016) A qualitative study of outsourced aeronautical mainte-nance: The case of Brazilian organizations. Journal of Air Transport Management, V. 55, p. 176-184. DOI: 10.1016/j.jairtraman.2016.04.013

Makridakis, S. G.; S. C. Wheel Wright e R. J. Hyndman (1998) Forecasting: methods and applications. 3ª ed. New York: Wiley.

Mitchell, C.; R. Rappold e W. Faulkner (1983) An analysis of Air Force EOQ data with an application to reorder point calcula-tion. Management Science, v. 29, n. 4, p. 440-446.

Morris, M. (2013) Forecasting Challenges of the Spare Parts Industry. Journal of Business Forecasting, v. 32, n. 3, p. 22-27.

Papakostas, N.; P. Papachatzakis; V. Xanthakis; D. Mourtzis e G. Chryssolouris (2010) An approach to operational aircraft maintenance planning. Decis. Support Syst, v. 48, n. 4, p. 604-612. DOI: 10.1016/j.dss.2009.11.010

Pennings, C. L. P.; J. Van Dalen e E. A. Van der Laan (2017) Exploiting elapsed time for managing intermittent demand for spare parts. European Journal of Operational Research, v. 258, n. 3, p. 958-969. DOI: 10.1016/j.ejor.2016.09.017

Shenyang, L.; H. Zhijie; Z. Qian e Z. Chen (2017) Forecasting Method of Consumption Spare Parts of Mutual Support System Based on Stochastic Process. Procedia Engineering, v. 174, p. 706 – 710. DOI: 10.1016/j.proeng.2017.01.208

Shenstone, L. e R. J. Hyndman (2005) Stochastic models underlying Croston's method for intermittent demand forecast-ing. Journal of Forecasting, v. 24, n. 6, p. 389-402. DOI: 10.1002/for.963.

Syntetos, A. A. e J. E. Boylan (2001) On the bias of intermittent demand estimates. International Journal Production Economics, v. 71, p. 457-466. DOI: 10.1016/S0925-5273(00)00143-2

Teunter, R. H. e L. Duncan (2009) Forecasting intermittent demand: a comparative study. Journal of the Operational Research Society, v. 60, n. 3, p. 321-329. DOI: 10.1057/palgrave.jors.2602569.

Teunter, R. H. e B. Sani (2009) On the bias of Croston’s forecasting method. European Journal of Operational Research, v. 194, n. 1, p.177–183. DOI: 10.1016/j.ejor.2007.12.001

Tuomas, R.; K. Eemeli; A. M. Ville; V. Kai e P. H. Raimo (2001) A simulation model for military aircraft maintenance and availa-bility. In: 15th European Simulation Multi Conference, Prague, Czech.

Vaughan, T. S. (2005) Failure replacement and preventive maintenance spare parts ordering policy. Eur. J. Oper. Res, v. 161, n. 1, p. 183-190. DOI: 10.1016/j.ejor.2003.06.026

Vasumathi, B. e S. Saradha (2013) Forecasting Intermittent Demand for Spare Parts. International Journal of Computer Applications, v. 75, n. 11, p. 12-16. DOI: 10.5120/13154-0805.

Wang, W. (2012) A stochastic model for joint spare parts inventory and planned maintenance optimization. Eur. J. Oper. Res, v. 216, n. 1, p. 127-139. DOI: 10.1016/j.ejor.2011.07.031

Ward, J. B. (1978) Determining reorder points when demand is lumpy. Management Science, v. 24, n. 6, p. 623-632.DOI: 10.1287/mnsc.24.6.623

Watson, R. B. (1987) The effects of demand-forecast fluctuations on customer service and inventory cost when demands is lumpy. Journal of the Operational Research Society, v. 38, n. 1, p. 75-82. DOI: 10.2307/2582524

Willians, T. M. (1984) Stock control with sporadic and slow-moving demand. Journal of the Operational Research Society, v. 35, n. 10, p. 939-948. DOI: 10.2307/2582137

Williemain, T. R.; C. N. Smart; J. H. Shockor e P. A. Desautels (1994) Forecasting intermittent demand in manufacturing: A comparative evaluation of Croston’s method. International Journal of Forecasting, v. 10, n. 4, p. 529–538. DOI: 10.1016/0169-2070(94)90021-3

Willemain, T. R.; C. N. Smart e H. F. Schwartz (2004) A new approach to forecasting intermittent demand for service parts inventories. International Journal of Forecasting, v. 20, n. 3, p. 375–387. DOI: 10.1016/S0169-2070(03)00013-X

Winters, P. R. (1960) Forecasting Sales by Exponentially Weighted Moving Averages. Management Science, April 1, v. 6, n. 3, p. 324 – 342. DOI: 10.1287/mnsc.6.3.324

Wong, J. T. e S. C. Tsai (2012) A survival model for flight delay propagation. J. Air Transp. Manag, v. 23, p. 5-11. DOI: 10.1016/j.jairtraman.2012.01.016

Wu, C. L. e R. Caves (2000) Aircraft operational costs and turnaround efficiency at airports. J. Air Transp. Manag, vol. 6, n. 4, p. 201-208. DOI: 10.1016/S0969-6997(00)00014-4

Wu, C.L. e J. T. Wong (2007) Delay Propagation Modeling and the Implications in Robust Airline Scheduling. ATRS World Conference, San Francisco.




DOI: https://doi.org/10.14295/transportes.v27i2.1600

Métricas do artigo

Carregando Métricas ...

Metrics powered by PLOS ALM


Direitos autorais 2019 Jersone Tasso Moreira Silva, Luiz Henrique Santos, Hugo Ferreira Braga Tadeu, Alexandre Teixeira Dias

Licença Creative Commons
Esta obra está licenciada sob uma licença Creative Commons Atribuição 4.0 Internacional.

TRANSPORTES (ISSN: 2237-1346) é uma publicação da ANPET - Associação Nacional de Pesquisa e Ensino em Transportes (www.anpet.org.br)

 

Licença Creative Commons

Este obra está licenciado com uma Licença Creative Commons Atribuição-NãoComercial-CompartilhaIgual 4.0 Internacional.