Localização de centros de auxílio e distribuição de suprimentos em operações de resposta a desastres

Alfredo Moreno, Douglas Alem, Deisemara Ferreira

Resumo


A localização de centros de auxílio para o atendimento das vítimas e a distribuição de suprimentos essências à sobrevivência são operações chaves em situações de desastre. Embora muitos trabalhos da literatura tenham desenvolvidos modelos matemáticos para auxiliar em alguma dessas decisões, poucos autores se preocuparam em integrar ambas as decisões com o dimensionamento da frota na tentativa de gerar soluções mais eficientes. Nesse artigo são desenvolvidos dois modelos teóricos de programação estocástica inteira mista para apoiar as decisões de localização, distribuição e dimensionamento da frota de forma integrada minimizando o custo total esperado. Para resolver os modelos, foram exploradas variações de métodos híbridos que combinam métodos exatos e heurísticos implementados no solver CPLEX. Os modelos matemáticos foram analisados com base nas informações do megadesastre da região Serrana do Rio de Janeiro de 2011. Os resultados indicam que a configuração adequada do método híbrido pode retornar soluções com até 34% de melhoria em relação à opção padrão. Os modelos mostraram ser potencialmente úteis para o apoio às decisões dos órgãos encarregados das ações de resposta a desastres.


Palavras-chave


Desastres naturais. Logística humanitária. Modelagel matemática. Programação estocástica.

Texto completo:

PDF

Referências


Afshar, A., Haghani, A., (2012). Modeling integrated supply chain logistics in real-time large-scale disaster relief operations. Socio-Economic Planning Sciences, v. 46, n. 4, p. 327–338. DOI: 10.1016/j.seps.2011.12.003.

Altay, N., Green, W., (2006). OR/MS research in disaster operations management. European Journal of Operational Research, v. 175, n. 1, p. 475–493. DOI: 10.1016/j.ejor.2005.05.016.

Apte, A., (2009). Humanitarian Logistics: A New Field of Research and Action. Foundations and Trends in Technology, Information and Operations Management, v. 3, n. 1, p. 1–100. DOI: 10.1561/0200000014.

Bozorgi-Amiri, A., Jabalameli, M., Alinaghian, M., Heydari, M., (2011). A modified particle swarm optimization for disaster relief logistics under uncertain environment. The International Journal of Advanced Manufacturing Technology, v. 60, n. 1-4, p. 357–371. DOI: 10.1007/s00170-011-3596-8.

Bozorgi-Amiri, A., Jabalameli, M., Mirzapour Al-E-Hashem, S., (2013). A multi-objective robust stochastic programming model for disaster relief logistics under uncertainty. OR Spectrum, v. 35, n. 4, p. 905–933. DOI: 10.1007/s00291-011-0268-x.

Busch, A., Amorim, S., (2011). Tragédia da região serrana do Rio de Janeiro em 2011: procurando respostas. Rio de Janeiro: Coordenação-Geral de Pesquisa da Escola Nacional de Administração Pública (ENAP), v. 1, p. 1–20.

Chang, M., Tseng, Y., Chen, J., (2007). A scenario planning approach for the flood emergency logistics preparation problem under uncertainty. Transportation Research Part E: Logistics and Transportation Review, v. 43, n. 6, p. 737–754. DOI: 10.1016/j.tre.2006.10.013.

Danna, E., Rothberg, E., Pape, C., (2005). Exploring relaxation induced neighborhoods to improve MIP solutions. Mathematical Programming, v. 102, n. 1, p. 71–90. DOI: 10.1007/s10107-004-0518-7.

Dolan, E., Moré, J., (2002). Benchmarking optimization software with performance profiles. Mathematical Programming, v. 91, n. 2, p. 201–213. DOI: 10.1007/s101070100263.

Döyen, A., Aras, N., Barbaroso, G., (2012). A two-echelon stochastic facility location model for humanitarian relief logistics. Optimization letter, p. 1123–1145. DOI: 10.1007/s11590-011-0421-0.

Eshghi, K.; Larson, R. C. Disasters: lessons from the past 105 years. Disaster Prevention and Management, v. 17, n. 1, p. 62–82, 2008. DOI: 10.1108/09653560911003705.

EM-DAT., (2016). The international disaster database. Disponível em: .

Ferreira, D., Morabito, R., Rangel, S., (2010). Relax and fix heuristics to solve one-stage one-machine lot-scheduling models for small-scale soft drink plants. Computers & Operations Research, v. 37, n. 4, p. 684–691. DOI: 10.1016/j.cor.2009.06.007.

Galindo, G., Batta, R., (2013). Review of recent developments in OR/MS research in disaster operations management. European Journal of Operational Research, v. 230, n. 2, p. 201–211. DOI: 10.1016/j.ejor.2013.01.039.

Hutter, F., Hoos, H., Leyton-Brown, K., (2009). ParamILS : An automatic algorithm configuration framework. Journal of Artificial Intelligence Research, v. 36, p. 267–306.

ILOG, (2011). ILOG CPLEX 12.1: user’s manual and reference manuals.

Li, L., Jin, M., Zhang, L., (2011). Sheltering network planning and management with a case in the Gulf Coast region. International Journal of Production Economics, v. 131, n. 2, p. 431–440. DOI: 10.1016/j.ijpe.2010.12.013.

Lin, Y., Batta, R., Rogerson, P., Blatt, A., Flanigan, M., (2012). Location of temporary depots to facilitate relief operations after an earthquake. Socio-Economic Planning Sciences, v. 46, n. 2, p. 112–123. DOI: 10.1016/j.seps.2012.01.001.

Mete, H., Zabinsky, Z., (2010). Stochastic optimization of medical supply location and distribution in disaster management. International Journal of Production Economics, v. 126, n. 1, p. 76–84. DOI: 10.1016/j.ijpe.2009.10.004.

Moreno, A., Alem, D., Ferreira, D., (2015). Coordenação da localização, distribuição e dimensionamento de frota em situações de desastre. In: BRAZILIAN SYMPOSIUM ON OPERATIONS RESEARCH. Proceedings… , p. 1499-1509.

Nolz, P., Doerner, K., Gutjahr, W., Hartl, R., (2010). A Bi-objective Metaheuristic for Disaster Relief Operation Planning. Advances in Multi-Objective Nature Inspired Computing. Studies in Computational Intelligence, p. 167–187. DOI: 10.1007/978-3-642-11218-8_8.

Noyan, N., (2012). Risk-averse two-stage stochastic programming with an application to disaster management. Computers & Operations Research, v. 39, n. 3, p. 541–559. DOI: 10.1016/j.cor.2011.03.017.

Ortuño, M. T., Cristóbal, P., Ferrer, J. et al, (2013). Decision Aid Models for Disaster Management and Emergencies., Atlantis Computational Intelligence Systems. v. 7, p. 17–45. DOI: 10.2991/978-94-91216-74-9.

Rath, S., Gutjahr, W., (2011). A math-heuristic for the warehouse location–routing problem in disaster relief. Computers & Op-erations Research, v. 42, p. 1–15. DOI: 10.1016/j.cor.2011.07.016.

Rawls, C., Turnquist, M., (2010). Pre-positioning of emergency supplies for disaster response. Transportation Research Part B: Methodological, v. 44, n. 4, p. 521–534. DOI: 10.1016/j.trb.2009.08.003.

Rawls, C., Turnquist, M., (2012). Pre-positioning and dynamic delivery planning for short-term response following a natural disaster. Socio-Economic Planning Sciences, v. 46, n. 1, p. 46–54. DOI: 10.1016/j.seps.2011.10.002.

Salmeron, J., Apte, A., (2010). Stochastic Optimization for Natural Disaster Asset Prepositioning. Production and Operations Management, v. 19, n. 5, p. 561–574. DOI: 10.1111/j.1937-5956.2009.01119.x.

Shen, Z., (2007). Integrated supply chain design models: a survey and future research directions. Journal of Industrial and Management Optimization, v. 3, n. 1, p. 1–27. DOI: 10.3934/jimo.2007.3.1.

Song, R., He, S., Zhang, L., (2009). Optimum transit operations during the emergency evacuations. Journal of Transportation Systems Engineering and Information Technology, v. 9, n. 6, p. 154–160. DOI: 10.1016/S1570-6672(08)60096-3.




DOI: https://doi.org/10.14295/transportes.v25i2.1168

Métricas do artigo

Carregando Métricas ...

Metrics powered by PLOS ALM


Direitos autorais 2017 Alfredo Moreno, Douglas Alem, Deisemara Ferreira

Licença Creative Commons
Esta obra está licenciada sob uma licença Creative Commons Atribuição 4.0 Internacional.

TRANSPORTES (ISSN: 2237-1346) é uma publicação da ANPET - Associação Nacional de Pesquisa e Ensino em Transportes (www.anpet.org.br)

 

Licença Creative Commons

Este obra está licenciado com uma Licença Creative Commons Atribuição-NãoComercial-CompartilhaIgual 4.0 Internacional.