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ABSTRACT
Pedestrian crossing during vehicular green time is a problem that still requires better 
understanding and investigation given the complexity of the variables involved and their 
interrelationships. Automated collection tools can be important for observing and for 
analyzing these variables and interrelationships. The main objective of this study is to 
customize and apply an automated tool to collect data of important variables in studies of 
pedestrian crossings at signalized intersections, such as vehicle headways, pedestrian delays, 
vehicle speeds, vehicle types, and crossing times, per lane. The tool, applied to a video of 
a signalized intersection in Fortaleza, consisted of the YOLOv7 and StrongSORT algorithms. 
The tool training mAP was approximately 90%. In total, 9427 vehicles and 723 pedestrians 
were tracked; the headways showed great amplitude, the average speed of vehicles was 
28 km/h, and the average delay for pedestrians was 18 s. Validation with a collection tool 
(RUBA) showed that there were no significant differences in the two methods regarding 
the vehicle passage times and headways. For vehicle speeds, the differences were circa ± 6 
km/h, and for the pedestrian variables, the mean of differences were up to 0.2 sec.
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RESUMO
A travessia de pedestres durante o verde veicular é um problema que ainda necessita de 
maior compreensão e investigação, visto a complexidade das variáveis envolvidas e suas inter-
relações. Ferramentas de coleta automatizada podem ser importantes aliadas na obtenção 
dessas variáveis e análise de suas inter-relações. O objetivo principal deste estudo é customizar 
e aplicar uma ferramenta automatizada para coletar variáveis importantes em estudos de 
travessias de pedestres em interseções semaforizadas, sendo estas os headways veiculares, 
os atrasos dos pedestres, as velocidades veiculares, os tipos de veículo e os instantes de 
travessia, por faixa. A ferramenta, aplicada em um vídeo de uma interseção semaforizada 
de Fortaleza, consistiu nas ferramentas YOLOv7 e StrongSORT. O mAP de treinamento da 
ferramenta foi de quase 90%. Ao todo, 9427 veículos e 723 pedestres foram rastreados; os 
headways mostraram grande amplitude, a velocidade média dos veículos foi de 28 km/h 
e o atraso médio dos pedestres foi de 18 seg. A validação com uma ferramenta de coleta 
(RUBA) apontou que não houve diferenças significativas nas coletas pelos dois métodos 
quanto aos instantes de passagem dos veículos e de seus headways; para as velocidades 
veiculares as diferenças foram entre ± 6 km/h, e para as variáveis dos pedestres, as médias 
das diferenças foram de até 0,2 seg.
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1. INTRODUCTION

Pedestrian crossings on red, in other words, on green for vehicles, regardless of the existence of 
traffic lights for pedestrians, are a frequent and serious road safety problem (Onelcin and Alver, 
2015). Studies have been conducted to understand the variables that affect pedestrians’ acceptance 
of vehicular headways on red, including pedestrian delay, speed, and vehicle type (Zhu et al., 2021; 
Raoniar and Maurya, 2022; Nikolaou et al., 2023).

Collecting these variables manually can be very time-consuming and expensive. Therefore, the 
use of automated tools for data collection is relevant, as they offer faster and less laborious results 
(Noh et al., 2022). Thus, the main objective of this paper is to customize and to apply an automated 
tool to collect variables related to pedestrian crossings at intersections, such as pedestrian delay, 
vehicle speed, type, and headway per lane, from video images from monitoring cameras.

This automated tool can help planning the operation of signalized intersections in urban cities 
that have video surveillance cameras, as it allows, for example, the signal control to be optimized 
focused on the safety and quality of service of pedestrian movements, which is generally not given 
much priority (Marisamynathan and Vedagiri, 2019).

2. LITERATURE REVIEW

2.1. Acceptance of headways by pedestrians

In the pedestrian crossing literature, there are different concepts about vehicular headway. 
The most common is the time interval between the arrival of the pedestrian, i.e., the beginning of 
the wait, and the passage of the approaching vehicle (Chandra et al., 2014; Marisamynathan and 
Vedagiri, 2019). A second type considers the accepted headway as the time difference between 
the vehicle that approached the conflict area immediately before the pedestrian crossing and the 
vehicle that approached the conflict area immediately after (Koh and Wong, 2014). In this study, 
a third concept was adopted, known as rolling-gap: the accepted headway, which is obtained per 
lane, is the time interval between the moment the pedestrian reaches the center of the crossing 
lane and the passage of the approaching vehicle on that section.

2.2. Factors that influence pedestrian crossing on red

One of the key factors that can influence crossing on red is pedestrian delay, which is defined as 
the time difference between the moment when the pedestrian arrives at the intersection to cross 
it and when he/she starts crossing (Zhu et al., 2021). In studies that address this factor as relevant 
to red crossings (Dommes et al., 2015; Song et al., 2019, Afshari et al., 2021; Raoniar and Maurya, 
2022), it was noted that the longer the pedestrians wait on red, the greater their tendency to 
look for vehicular headways. The work of Raoniar and Maurya (2022), in India, highlights that 
the probability of crossing on red for pedestrians who waited more than 40 s increased by 21.4% 
compared to those who waited until 20 s.

Another relevant factor found at crossings on red studies was the vehicular flow, which, the 
higher it is, the less likely pedestrians are to accept headways (Dommes et al., 2015; Ma et al., 
2020). Ma et al. (2020), in a study at 3 signalized intersections in China, concluded that 40% of 
pedestrians who crossed on red did so when the volume of vehicles was moderate (between 250 and 



TRANSPORTES | ISSN: 2237-13461 3

Tréz et al. Volume 32 | Número 3 | e2961 | 2024

550 pcu/h/lane), and when it was high (above 500 pcu/h/lane) the proportion of crossings on 
red light decreased to 30%.

The vehicle type can also affect pedestrians’ crossing decisions, according to Zhu et al. (2021), 
who evaluated 6 signalized intersections in Hong Kong, and inferred, by a logistic regression model 
that, an increase of 1% in the volume of heavy vehicles reduced the probability of crossing on red 
became by 0.48%, as the chance of serious injuries is greater when there are conflicts involving 
heavy vehicles (buses and trucks).

Finally, vehicle speed was found significant in the studies by Onelcin and Alver (2017), Mukherjee 
and Mitra (2022), and Nikolaou et al. (2023). Mukherjee and Mitra (2022) examined 55 signalized 
intersections in India using historical data, applying questionnaires and observing crossings, and 
the results showed that a 10 km/h increase in vehicle speed reduced the chances of crossings on 
red by 10%.

2.3. Use of computer vision in studies of pedestrian crossings
Computer vision, if well used, can be very helpful in pedestrian crossing analysis, as it allows for 
quick and accurate data collection of the necessary variables, such as the headway accepted by 
the pedestrian, their walking speed and delay (Sayed et al., 2016; Castro Jr. et al., 2023), providing 
possibilities for a variety of studies on pedestrian behavior.

Such variables can be estimated from pedestrian and vehicle trajectories data. However, to collect 
this type of data, it is necessary to use auxiliary tools to automate computer routines, given the 
substantial number of observations to be made at each moment. One of the areas of application of 
computer vision is object tracking, which seeks automated methods for extracting the trajectories 
of objects moving through an environment. For the specific case of tracking objects in videos, the 
detection tracking approach is one of the most common (Luo et al., 2022), which employs object 
detection models and tracking algorithms together.

The detection models are trained to locate and classify objects in an environment. You Only 
Look Once (YOLO) (Redmon et al., 2016) is one of the object detection models most found in the 
literature, given its simplicity, efficiency, computational performance and easy customization. Over 
the years, several improvements and modifications have been implemented, with YOLOv8 being 
one of the most recent versions (Ultralytics, 2023). Objects are commonly located using bounding 
boxes that frame the “body” of the object. For each bounding box found in an image, the model 
returns the coordinates and dimensions of the box, the class/type of the framed object and the 
degree of confidence that it really is an object.

Detection tracking algorithms, in turn, estimate entity trajectories based on the data provided 
by the detection models. An example of this type of algorithm is Simple Online and Realtime 
Tracking (SORT), which stands out for its simplicity and computational efficiency (Bewley et al., 
2016). Being an open-source and easily expandable algorithm, SORT has served as the basis for 
several modifications and improvements over time (Wojke et al., 2017; Du et al., 2023). According 
to Bewley et al. (2016), the SORT algorithm receives object detection data referring to the current 
frame and attempts to associate them with existing numerical identifiers (identities (ID), each 
corresponding to a trajectory). If a detection is not associated with an active ID, the algorithm 
creates a new ID and associates it with the detection (thus starting a new trajectory). If a trajectory 
is not associated with a detection for a specific period, it is deactivated, indicating that the object 
has left the scene.
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To perform the association between detections and trajectories, the algorithm first estimates the 
future position of the tracked objects based on their locations in previous frames. The model then 
uses these estimates to calculate the proximity between detections and trajectories, optimizing 
the associations. DeepSORT (Wojke  et al., 2017) is an extension of the SORT algorithm that seeks 
to improve object tracking after occlusion situations using metrics that quantify the appearance of 
objects. The StrongSORT algorithm (Du et al., 2023), in turn, implements a series of modifications 
to the DeepSORT algorithm, such as replacing the metric for calculating the distance between 
detections and trajectory and replacing the model that quantifies the appearance of objects. 
Finally, the result of these tracking algorithms is summarized in a tabular file, where each line 
corresponds to a bounding box that locates and classifies an object, a number that represents the 
ID of the located object, and the frame number associated with the detection. In this manner, a 
set of lines with the same ID number forms the trajectory of an entity.

The most common metrics for evaluating the localization and classification of objects in images 
are Intersection Over Union (IoU) , Precision, Recall, Confusion Matrix, Average Precision (AP)  
and Mean Average Precision (mAP). The IoU seeks to quantify the overlap between two regions 
(bounding boxes, in the case of object detection), and is calculated as the ratio between the 
intersection area and the union area of the regions involved (Equation 1). Precision and Recall are 
normally calculated by determining the true positives (TP), false positives (FP), and false negatives  
(FN) (Equations 2 and 3). However, the values of these three indicators depend on the choice of 
the correspondence threshold, which determines whether a predicted detection corresponds to 
a real object in the image. This threshold is usually based on the IoU  metric, where, for example, 
only detections with an IoU above 50% in relation to a real object are considered true positives 
(or false positives, if the detector misses the class of the real object).

  AIIoU
AU

=  (1)

where: AI: area of intersection between two bounding boxes; and AU: area of union between two 
bounding boxes

  
  
VPPrecision

VP FP
=

+  (2)

  
  
VPRecall

VP FN
=

+  (3)

where: VP: true positives; FP: false positives; and FN: false negatives
The Confusion Matrix, in turn, is a visual representation of the TP, FP and FN values, extremely 

useful for making considerations about the errors and successes of the detection system. Another 
threshold that influences the metrics of an object tracking system is the confidence threshold, 
which determines which predictions should be considered detections, based on the confidence level 
value. A common confidence threshold of 50% is used, where only detections with a confidence 
level above 50% are considered. Choosing a high confidence threshold implies a higher precision 
value but reduces the recall of the detection system. The AP metric seeks to quantify how much of 
the precision is influenced by this variation in the confidence threshold, being equivalent to the 
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area under the precision versus recall curve. The value of the AP metric ranges from 0 to 1, the 
higher the value the better (Padilla et al., 2020). AP values are commonly calculated for each object 
class and vary depending on the chosen IoU threshold. Finally, the mAP metric is the average of 
all the AP values for different IoU values and/or for different object classes and can be considered 
as the overall performance of the detector (Al-qaness et al., 2021).

Training the detection and tracking algorithms is important to achieve better results. It is 
necessary to separate the images into training (used for model learning), validation (for evaluation 
and improvement of parameters throughout training) and test groups (for final evaluation of 
model performance), in a stratified random manner, in a ratio that is typically 70:15:15 (Genc and 
Tunc, 2019). Another important aspect, highlighted by Al-qaness et al. (2021), is the retraining 
of models with more generic data (transfer learning), as it reduces training time and increases 
the accuracy of the final model.

3. METHOD

The method proposed in this work is divided into 5 steps: 1) sites selection; 2) customization 
of the automated tool; 3) tool application: collection of trajectories and variables of interest; 4) 
tool validation; and 5) exploratory data analysis of variables related to the headway acceptance.

3.1. Sites selection

The selection of the intersections was based on three characteristics that enabled the observation 
of variables relevant to the acceptance of headways on red: (i) The roads must have two or three 
lanes in one direction, due to their typical nature in the city of Fortaleza; (ii) enough vehicular 
flows, to enable the formation of acceptable headways by pedestrians; and (iii) presence of camera 
positioned in a way that allows observation of all vehicles passing over the stop bar, pedestrians 
waiting to cross on both sidewalks, and the crossings. The videos were provided by Fortaleza 
Advanced Traffic Control (CTAFOR).

3.2. Customization of the automated tool

The YOLOv7 object detection model (Wang et al., 2022) and the StrongSORT tracking algorithm 
(Du et al., 2023) were used as the basis for the trajectory extraction tool. Both were chosen due to 
their simplicity of use and customization, as well as their computational efficiency. A pre-trained 
YOLOv7 model was retrained using a database of images extracted from videos of signalized 
intersections in Fortaleza-CE provided by CTAFOR. Objects referring to the classes’ “bicycle”, “bus”, 
“car”, “motorcycle”, “pedestrian” and “truck” were manually labeled. The labeled images were 
separated into training, validation, and test groups. The mAP@0.5 metric (mAP metric using a fixed 
50% matching threshold based on the IoU metric) was used to choose the best set of parameters 
during training from the validation group data. Post-training evaluation of the detection model 
consisted of analyzing the mAP@0.5 metric and the Confusion Matrix for the test group data. 
The tracking algorithm, in turn, was subjected to a trial-and-error calibration process, adjusting 
the parameters that control the model’s operation. The final combination of parameters was 
chosen based on visual analysis of the trajectory results for the various experiments conducted 
on a sample video of the intersection chosen for analysis.
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3.3. Application of the tool: collection of trajectories and variables of interest
After training and evaluation, the automated tool was applied to video, generating a file with the 
trajectories of all the objects tracked throughout each frame. This file was processed in computer 
codes to extract the volume of vehicles, by lane and type, the speed of the vehicles, the volume of 
pedestrians crossing, by area of origin, their delays, and the accepted headways. All these data 
were collected using trajectories in image coordinates based on the known field distance (4 m) 
between sections 1 and 2 of Figure 1.

The areas and sections of interest to pedestrians and vehicles for recording time instants 
to calculate the parameters were delimited as shown in Figure 1. In this way, the conflict area 
between pedestrians and vehicles (crosswalk), the reference for vehicle passage times (section 1), 
the references for the collection of vehicle speeds (section 1 and section 2), the numerical order 
considered for the vehicle lanes, the reference areas in each lane for the collection of pedestrian 
crossing times in the process of crossing (yellow rectangles), and the waiting areas for pedestrians 
on the sidewalks on both sides of the road (origins A and B) were determined.

With the trajectories of pedestrians and vehicles extracted, the variables of interest for the work 
were obtained: volumes, accepted headways, delays and speeds.

Figure 1. References adopted to record moments of pedestrians and vehicles.

3.4. Validation of the tool
To verify the detection quality of the computer vision tool in this study (hereinafter referred to 
as YOLO, for the sake of simplicity), a manual collection was conducted in the first 10 minutes of 
video to validate the vehicle and pedestrian volume results (by type and lane), vehicular headways, 
accepted headways, vehicular speeds, and pedestrian delays obtained by automated collection 
within the same time interval. The Ground Truth Annotator tool from RUBA (Road User Behavior 
Analysis) software was used (Tonning et al., 2017). As in RUBA the moments of passage are collected 
with the video reproduced in slow motion (10 frames per second), and each frame can be triggered 
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by click by the user, it can be assumed that the errors using this method are small compared to 
others (observation of videos in real time, traffic sensors, etc.). Therefore, we considered these 
data as reference (ground truth) to validate the tool developed in this paper.

The instants vehicles passed through the 2 sections were manually marked, to calculate the 
headways and vehicle speeds, as well as the instants at which pedestrians entered and left the 
origins, to calculate the delay. The comparison was made by creating scatter plots of the errors 
between the two methods (YOLO – RUBA) for the passage times through the sections, headways, 
speeds, and delays, and by analyzing the statistical confidence intervals of the error means of the 
start waiting times, end waiting times, and pedestrians’ delay.

3.5. Exploratory analysis of variables related to the headway acceptance

With the results of applying the automated tool, it was possible to collect the headways accepted 
by pedestrians during red times. For each crossing, 4 accepted headways were obtained, one per 
lane, as illustrated in Figure 2, in which the pedestrian is represented by a red rectangle along the 
crossing, in each lane, until the opposite sidewalk. As shown in the figure, the accepted headways 
were computed as the time between the pedestrian passes the center of the traffic lane and the 
vehicle passes through the same point.

Figure 2. Illustrative example of headways acceptance in each lane.

In the analysis of crossing on red, only accepted headways lower than 10 sec were considered, 
because we assumed that only such headways cause assessment of headway acceptance by 
pedestrians. For the exploratory analysis of the variables, we used scatter plots that related 
the headways accepted by the pedestrian with their delays and the with speeds of the vehicles 
considering these accepted headways.
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4. RESULTS

4.1. Selection of the intersections
After analyzing the videos made available by CTAFOR, we selected one for the application of the 
tool, which is the approach of Antônio Sales Avenue, at the intersection with Desembargador 
Moreira Avenue, in Fortaleza. This video was chosen because of its desirable characteristics.

4.2. Customization of the automated tool
The number of images labeled for training were 1,516, of which 1,140 (75.2%) were for training, 
185 (12.2%) for validation and 191 (12.6%) for test, values close to the 70%/15%/ 15% suggested 
by Genc and Tunc (2019). These training images came from 6 signalized intersections in Fortaleza, 
including the intersection that is the subject of this study. Training was performed in 1,250 iterations, 
reaching a training/validation mAP of 94.4%, precision of 95.2%, and recall of 92.2%. The evaluation 
of the tool with test images resulted in a mAP test of 89.4%. However, there was a low AP for trucks 
(75.7%) due to the incidence of false positives, which suggests future studies to retrain the model 
with new images of this class to increase the tool’s accuracy. According to the Confusion Matrix 
in Figure 3, which compares the success rates between the manual classification and the model’s 
prediction, all classes had success rates greater than 85%, except for trucks, which reached 70%.

Figure 3. Confusion Matrix of objects in the test images.

4.3. Application of the tool: collection of trajectories and variables of interest
In total, 9,427 vehicles and 723 pedestrians were tracked. The vehicle composition included 
366 bicycles, 125 buses, 7,044 cars, 1,767 motorcycles, and 125 trucks. The headways showed high 
values, reaching almost 600 s, due to the low flow of bicycles and buses in their respective exclusive 
lanes, in some periods of the filming, but practically all of them were under 100 s. The average 
speed of the vehicles at the intersection was 28 km/h, with bicycles showing the lowest average 
speed (13 km/h). The average pedestrian delay was 18 s.
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4.4. Validation of the tool
4.4.1. Validation of object detection

Regarding the comparison between the tools (YOLO and RUBA), the manual counting of objects using 
RUBA in the initial 10 minutes of the video approaching Antônio Sales Avenue resulted in 343 vehicles 
and 37 pedestrians, while using YOLO, in the same period, 337 vehicles and 32 pedestrians were 
recorded, that is, 1.7% and 13.5% less than in RUBA. This difference between counts occurred 
because of detection problems in YOLO such as to noise in the images, occlusions due to poles, signs 
and wires, crowds of vehicles at closed traffic lights and pedestrians in crossing areas, etc.

4.4.2. Validation of vehicle crossing times and headways

Figure 4 shows the scatter plots of the differences (errors) between the passage instants in section 
1 (Figure 4a) and between the instants in section 2 (Figure 4b) collected by the two methods (in s), 
considering their relationship with the speeds collected in RUBA. The results of the two graphs show 
that, for all classes, most of the errors are between -0.1 s and +0.1 s. Isolated points with discrepant 
values can also be noted in the two graphs, but these differences reach a maximum value of -0.5 s.

Figure 4. Errors between the instants of passage in section 1 (A) and between the instants of passage in section 2 (B) (in s) vs 
speeds collected in RUBA (in km/h).
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The dispersion of errors between headways (in sec) considering their relationship with the speeds 
collected by RUBA, illustrated in Figure 5, shows that most values are concentrated between -0.1 and 
+0.1 s, with few observations reaching -0.2 s and +0.2 s. This is probably due to the differences in 
the collection of arrival times at the beginning of the stop bar, as the vehicle headway is calculated 
based on this parameter. An example is the car with a speed of 10 km/h and an error of -0.25 s, which 
appears with the largest error (-0.3 s) in the graph of arrival instant errors in section 1, in Figure 4a.

Figure 5. Headways errors (in s) vs speeds collected in RUBA (in km/h).

4.4.3. Validation of vehicle speeds

In the scatter plot of errors between speeds (in km/h) considering their relationship with the speeds 
collected by RUBA, in Figure 6, it is suggested that the dispersion of errors, which vary between 
±6 km/h, increases with speed, which can be investigated in future work. The errors shown in 
the graph can be considered low because they correspond to approximately ±1.6 m/s difference.

Figure 6. Speed errors vs speeds collected in RUBA (in km/h).
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4.4.4. Validation of pedestrian delays

Figure 7 shows the pedestrian delay errors in ascending order. It is possible to observe that the 
lowest error was around -0.6 s and the highest was around +0.3 s.

Figure 7. Pedestrian delay errors (in s).

The 95% t-Student confidence intervals for the mean errors are shown in Table 1, and we 
considered the average errors small. It is important to highlight that, although 37 pedestrians were 
identified by RUBA and 32 by YOLO, 29 pedestrians who appeared correctly in both collections 
were paired. It was not possible to pair the rest due to tracking problems caused by occlusions 
in the image and grouping of pedestrians in the waiting and crossing areas, for example, keeping 
the tool from obtaining waiting times and delays. Therefore, the average of the differences was 
calculated with the 29 pedestrians paired.

Table 1: CI (95%) of the mean differences for pedestrians (in s).

N Mean (s) Standard Deviation (s) CI (95%) (s)

Delay errors 29 –0.1 0.2 [–0.2; 0.0]

Start of wait errors 29 0.1 0.2 [0.0; 0.0]

End of wait errors 29 0.0 0.1 [–0.1; 0.0]

4.5. Exploratory analysis of variables related to the headway acceptance
From the video, two durations of the traffic signal cycles were identified, one in the first 3 h with 
a pedestrian red time of 70 s, and the other in the last 2 h with a pedestrian red time of 80 s, both 
with flashing red of 7 s. 45 observations of accepted headways lower than 10 s in red were collected, 
referring to 36 pedestrians: 9 in lane 1, 12 in lane 2, 7 in lane 3 and 17 in lane 4. As only accepted 
headways lower than 10 s were considered for the analysis, the amounts are different across lanes.

The relationships between the headways accepted by pedestrians in red and the speeds of 
vehicles corresponding to these headways by vehicle type, vehicle lane, and area of origin of the 
pedestrian are shown in Figure 8. The motorcycle with speed of 0 km/h and accepted headway of 
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5 s (Lane 1 Origin B) had its speed set as -1 due to tracking problems. The highest speeds of vehicles 
whose headways were accepted in red occurred in lanes 2 and 3, with emphasis on pedestrians 
from origin A who accepted headways of less than 5 s from motorcycles that were at speeds of 
60 km/h, and there was also acceptance of headways of cars at speeds approaching 40 km/h.

Figure 8. Relationship between accepted headways in red (in s) and vehicle speeds (in km/h), by vehicle type, vehicle lane 
and pedestrian origin zone.

When exploring the relationship between headways accepted on red by pedestrians and their delay, 
in Figure 9, there are more headways accepted by pedestrians from origin A in the 4 lanes, but we 
observed no pattern amongst them. In lane 1, for example, there are different waiting times, reaching 
60 s, and there is a predominance of acceptance of headways by pedestrians from origin A when the 
vehicles were bicycles, while those from origin B show a balance in vehicle type. In lane 2, pedestrians 
from origin B accepted headways from cars and motorcycles after waiting for up to 20 s, while those 
from origin A waited longer, and, in lane 3, pedestrians from both origins waited for around 20 s, but 
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those from origin A accepted headways of less than 2.5 s, while those from origin B accepted headways 
between 2.5 s and 5 s. Finally, in lane 4, there was a divergence in the accepted headways of pedestrians 
from origin A, but those from origin B waited 20 s or less and accepted headways of 7.5 s or longer.

It should be noted that the focus of this work is on the data collection of the variables of interest, 
not on making inferences on the relationships among these variables. The collected data provided 
enough samples to illustrate the tool’s potential. Larger samples are required to model and 
understand the interrelationships among the variables.

Figure 9. Relationship between accepted headways in red and pedestrian delays (in s), by vehicle type, vehicle lane and 
pedestrian origin zone.

5. CONCLUSIONS AND RECOMMENDATIONS
This work aimed to customize and apply an automated tool to collect important variables in studies 
of pedestrian crossings at signalized intersections. The selected variables were vehicle headways 
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per lane and type of vehicle, pedestrian delay, and vehicle speed. To collect these variables, we 
used the algorithms YOLOv7 (Wang et al., 2022) for detection and StrongSORT (Du et al., 2023) 
for tracking.

Training the tool using labeled images from other videos of signalized intersections in Fortaleza 
resulted in a validation mAP of 94.4% and a test mAP of almost 89.4%. However, there was an 
incidence of false positives for trucks, which had precision of 51% and AP of 76%. It is suggested 
to retrain the model with new images of this class, which would increase the tool’s accuracy. Based 
on these results, we considered that the tool has been well trained and is, in general, calibrated 
for use.

Validation of the automated tool with RUBA (Road User Behavior Analysis) showed that errors in 
collecting passage times, headways and delays between the two methods were low. Speed errors 
seem to increase with increasing speed, which can be investigated in future work with statistical 
tests for homoscedasticity.

The last step stage was the exploratory analysis of the variables related to the acceptance of 
headways lower than 10 sec in red for pedestrians. The relationship among headways accepted on 
red, vehicle speeds and pedestrian delays shows that, in general, pedestrians from origin A waited 
longer to cross the road and accepted more headways of smaller sizes and of vehicles at higher 
speeds than those of origin B. Nevertheless, it is important to highlight the merely exploratory 
nature of the analyses, which means that larger samples need to be collected and more analyses 
conducted to reach robust conclusions.

An important limitation of this work was the sample sizes, making it impossible to statistically 
estimate the relationships among the variables explored here, such as the effect of pedestrian delay 
on the acceptance of headways, as only 36 pedestrians evaluated the headways and crossed in the 
red during the 5 hours of filming. It is therefore recommended to apply the tool to a new set of 
videos of the intersection approach examined in this study, to increase the sample size and enable 
more in-depth analysis. The tool could also be applied to videos of other signalized intersections 
with significant flow of pedestrians, to model their behavior in other situations.

Finally, we suggested the development, calibration and validation of statistical regression models, 
considering other variables, such as the arrival pattern of vehicles at the intersection, to predict 
the relationship between headways accepted on red by pedestrians and their delay at signalized 
intersections in Fortaleza.
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