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 ABSTRACT  

Bikesharing systems have gained popularity over the years and now face the challenge 

of being responsive and of mee4ng the growing demand. Thus, understanding the 

temporal pa6ern of bikesharing trips is paramount. This study examined data from 

Bikesampa (a fixed-sta4on system opera4ng in the Brazilian city of São Paulo) and 

applied k-means clustering to sta4ons according to the hourly demand of pickups and 

returns. The results revealed three clusters: (i) balanced, (ii) unbalanced, with higher 

rates of bike pickup in the morning and (iii) unbalanced, with higher rates of bike return 

in the morning. A spa4al autocorrela4on analysis showed that cluster membership was 

not randomly distributed over space, sugges4ng an associa4on with characteris4cs of 

the urban environment, and indica4ng that the system may require different 

rebalancing strategies depending on the sta4ons loca4on. Such understanding can help 

guide the development of opera4onal strategies and user incen4ve policies to improve 

the efficiency of bikesharing systems. 

 

RESUMO   

Os sistemas de bicicletas compar4lhadas ganharam popularidade nos úl4mos anos, de 

forma que precisam ser responsivos à demanda. Logo, é necessário entender o 

comportamento temporal destas viagens. Esta pesquisa estudou o sistema de estações 

fixas Bikesampa, da cidade de São Paulo, e teve como obje4vo classificar as estações 

segundo a demanda horária de re4radas e devoluções. U4lizou-se um agrupamento  

k-médias, resultando em três grupos de estações: (i) balanceado, (ii) desbalanceado, 

com maior número de re4radas na manhã, e (iii) desbalanceado, com maior número de 

devoluções na manhã. Verificou-se por meio da análise de autocorrelação espacial que 

os grupos não se distribuem aleatoriamente no espaço, sugerindo uma associação com 

caracterís4cas do espaço urbano e a necessidade de diferentes estratégias de 

rebalanceamento entre estações dependendo da localização. O conhecimento do 

comportamento temporal das viagens de bicicletas compar4lhadas permite o 

desenvolvimento de polí4cas de operação e de incen4vo ao usuário para melhorar a 

eficiência desses sistemas. 
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1. INTRODUCTION 

Bicycle use has grown steadily, be it for the increase in recreational and sports use (Levy, Golani 
and Ben-Elia, 2019), or for the bene"its to public health and to the environment (Shaheen, Cohen 
and Martin, 2013; Zhang et al., 2015), or even for being economically accessible to different 
social classes (Chardon, Caruso and Thomas, 2017; Pritchard et al., 2019).  
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Bikesharing systems – service offering temporary loan of bicycles in strategically located 
regions – explain part of this increase (Faghih-Imani et al., 2017; Fishman, 2016; Wang et al., 
2016).  

 These systems provide convenience to users and make this means of transport more 
accessible and "lexible, since they dispense with bicycle ownership and reduce the entrance 
barrier, introducing new cyclists to the system (Benedini, Lavieri and Strambi; Eren and Uz, 
2020; Fishman, Washington and Haworth, 2013). Bikesharing systems are divided into two 
types: (i) "ixed-stations, in which the user picks up and returns the bicycle at a station, and (ii) 
without stations, which provides a door-to-door service (Wu, Kim and Chung, 2021). This 
article focuses on the "ixed-station systems. 

 With the growing popularity of bikesharing, understanding its dynamic is fundamental to 
develop systems that are ef"icient and responsive to the demand (Shaheen, Cohen and Martin, 
2013). Some recent studies have been dedicated to understanding the behavior of the hourly 
demand for bikesharing along the day. Most of the trips are taken in peak periods in the morning 
and in the evening, frequently for pendular "irst and last mile trips (Gu, Kim and Currie, 2019; 
Wu, Kim and Chung, 2021). There are also more diffuse uses along the day, especially for 
education and leisure reasons (Faghih-Imani et al., 2017; Gu, Kim and Currie, 2019).  

 The general aim of this study is thus to complement the literature knowledge on the hourly 
variation in demand of "ixed-station bikesharing systems, aiming to guide the elaboration of 
policies for improving operations and for stimulating and attracting users. The object of study 
was the Bikesampa system in the city of São Paulo. Figure 1 presents the knowledge gaps and 
hypotheses, as well as the speci"ic objectives and contributions of the present research. 

 
   

Gaps 

 

Recent studies generally employ aggregate metrics for analyzing demand, and do not 

assess the hourly variation in demand  
   

Hypotheses 

 

The stations present different average temporal demand profiles; these temporal profiles 

are not randomly distributed in space 
   

Objectives 

 

- Identifying clusters of stations from the temporal demand profiles 

- Analyzing whether the clusters of stations are randomly distributed in space, suggesting 

some degree of association with characteristics of the urban space 
   

Contributions 

 

- Complementing the studies on the hourly variation in bikesharing demand 

- Understanding whether the temporal behavior of demand allows increasing the 

operational efficiency of redistributing bicycles among stations 

- Improving the decision-making process for bikesharing system operators, especially from 

the viewpoint of the critical process of repositioning bicycles among stations and of 

rebalancing the pickup and return flows. Stations are thus prevented from being saturated 

or depleted, for increasing the system reliability for the user and, therefore, making the 

bicycles use more attractive 

- There are few studies on bikesharing-related behavior in Latin America and especially in 

a megalopolis such as São Paulo, which underwent a fast urbanization process and has an 

eccentric trip dynamic 

Figure 1. Gaps, hypotheses, objectives and contributions 
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2. LITERATURE REVIEW 

There was a signi"icant increase in the number of researches about bikesharing systems in 
recent years. Si et al. (2019) analyzed the most recurrent topics in the literature between 2010 
and 2018 and identi"ied the most studied themes regarding the so-called 3rd generation 
systems, which count on docks or devices that prevent bicycle thefts, such as 
telecommunication systems and other technologies to identify the user and the location of the 
bicycles (Demaio and Gifford, 2004).  These authors particularly point out that the most urgent 
problem of this generation is the imbalance between bicycle demand and supply at the station.  

 To better understand the behavior of the cyclists in these systems, numerous studies seek to 
establish an association between this behavior and characteristics of the system operation, of 
the urban space, of social economy and of land use. These researches frequently use an 
aggregate metrics in time (day, month or year) to represent the demand for bikesharing, 
hindering the understanding of its hourly variation (Faghig-Imani	et al., 2014; Tran, Ovtracht 
and D’Arcier, 2015). 

 The knowledge of hourly variation is relevant to identify factors that foster the use of bicycles 
at speci"ic times, helping to minimize the risk of saturating or depleting the stations and 
reducing the cost of redistributing bicycles, improving the quality and availability of the service 
(Fricker and Gast, 2016; Tran, Ovtracht and D'Arcier, 2015).  

 In places in Europe, Asia and America, demand peaks at bikesharing stations were veri"ied 
in the morning and in the evening, and occasionally at lunchtime (Faghih-Imani et al., 2017; Gu, 
Kim and Currie, 2019; Hu et al., 2021; Schimohr and Scheiner, 2021; Zhu et al., 2020). This 
behavior is typical of pendular trips (Faghih-Imani et al., 2014; Mix, Hurtubia and Raveau, 2022; 
Tran, Ovtracht and D’Arcier, 2015).  

 The use in the afternoon and evening period is particularly greater as compared to the other 
periods of the day, probably due to additional trips made at this time for leisure and 
gastronomic reasons. This hypothesis was con"irmed by the studies of Faghih-Imani et al. 
(2014) and of Tran, Ovtracht and D'Arcier (2015).  

 In places with mixed land use or with different types of activities, the demand for both 
pickups and returns is more diffuse in time (Faghih-Imani	 et al., 2017). The literature also 
attributes this behavior to the existence of academic hubs, once the schedules are not generally 
"ixed (Faghih-Imani et al., 2014; Gu, Kim and Currie, 2019). 

Aiming to complement the studies on temporal demand at a disaggregated level, this research 
identi"ied clusters of temporal pro"iles for pickup and return at stations.  

3. MATERIALS AND METHODS 

For contextualization purposes, we "irst provide an overview of bike use in the city of São Paulo. 
Then, the data employed in the research regarding the Bikesampa bikesharing system are 
presented. Next comes the method for constructing the average temporal pro"iles of use of the 
stations that served as a basis to form the station clusters. Lastly, a spatial autocorrelation 
analysis is presented to assess whether the clusters are randomly distributed in the urban space 
or whether they have a pattern that can be associated to the characteristics of the station’s 
surroundings. 
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3.1. Bicycle use in the city of São Paulo 

The city of São Paulo spreads over 1,521 km² and has about 12 million inhabitants (IBGE, 2021), 
thus con"iguring the most densely populated city in Brazil and in Latin America. The trips in the 
São Paulo Metropolitan Region are distributed as follows: 36% in public transport, 31% in 
individual motorized vehicles, 32% on foot and 1% on bicycles (Metrô-SP, 2020b). As compared 
to the use of private bicycles, a larger proportion of bikesharing trips is made in a combination 
with other modes, particularly public transport. This is an expected result, since it is not 
possible, with few exceptions, to transport the bicycle inside buses, trains or subway (Benedini, 
Lavieri and Strambi, 2019). 

 Regarding the cycling infrastructure, São Paulo counts on about 700 kilometers of bicycle 
lanes, bike paths and cycleroutes (CET, 2020). However, 72% of the trips made on bicycles do 
not use segregated lanes (Metrô-SP, 2020a). The main purposes for using a bicycle are: work 
(69%), school (14%) and leisure (6%). Bicycle trips are mostly made by men (90%), between 
30 to 49 years old (41%), who have completed secondary education (40%) and having a family 
income of about R$1,908 to R$3,816 (in Brazilian reais of 2018) (43%) (Metrô-SP, 2020a). 

3.2. The Bikesampa system 

There are currently two "ixed-station bikesharing systems in the city of São Paulo, both 
considered to be third-generation. About 93% of the stations belong to the Bikesampa system 
(BikeItau, 2022), associated to the Itaú Bank and operated by the Tembici company.  
Given its strong representativeness, this system was chosen as the object of study. 

 The reference period of the study considered working days between February 01, 2020, and 
March 15, 2020 (Tembici informed a marked drop in the number of trips as from March 16, 
2020, due to the restrictive measures taken to control the Covid-19 pandemic). During this 
period, Bikesampa operated with 279 stations, concentrated on the West, South and Central 
zones; no stations were located in the North and East zones of São Paulo. It is worth highlighting 
that rainy or cold days were not disregarded, as due to the concentration of stations in space, 
this effect is believed to be transversal for all the stations. 

 For the analysis period, Tembici made available a database on trips consisting of day, time 
and pickup station, and the same information for the return station. Note that there is not an 
identi"ier for individuals, so that individuals may appear with distinct frequencies in the 
databases, depending on the number of trips made during the period. Also, the following 
characteristics of the stations were available: location coordinates, number of docks and the 
existence of a pocket (a station reserve capacity). Of the 279 stations, only 239 were selected 
for analysis (illustrated in Figure 2), the following being excluded: 

• 35 stations that operated in only one of the months (February or March). Since the 
method for building the temporal pro"iles considers the average "low in the period under 
analysis, this exclusion prevents the "lows from being underrepresented, since the 
period is smaller than that under analysis; 

• 1 station that did not have the information on the coordinates or number of docks;  

• 2 stations located in the campus of the University of São Paulo, where the spatial and 
socioeconomic characteristics differ from the remainder of the city; 

• 2 stations located in Largo da Batata, which have "lows and number of docks much higher 
than the remaining stations, and may be considered discrepant observations. 
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Figure 2. Location of the 239 Bikesampa stations selected 

 

3.3. Clusters of sta�ons 
3.3.1.	Construction	of	the	average	temporal	pro�iles	of	use	of	the	stations 

To understand the temporal behavior of the stations, the concept of average hourly pro"iles of 
use of the stations was employed, according to the methodology proposed by Gu, Kim and 
Currie (2019) for the city if Suzhou (China), which served as a reference for the present 
research. Firstly, the average hourly "low (�) is calculated, which corresponds to the average of 
the number of bicycles returning to (���,�) or leaving (���,�) a given station for each hour of the 

day along the period of analysis, by the equations: 

 ���,� �  	

  ∑ ���,�,

	  (1) 

                                                                       ���,� �  	

  ∑ ���,�,

	  (2) 

where: �:  	number of days in the analysis period; 

   
:   time of day; 

	 	 	 �:    station; 

   �/�:   return (in) or pickup (out). 

 Since the stations present different orders of magnitude of "lows, to compare the pro"iles of 
the variation in average hourly "lows along the day, a standardization is carried out, dividing the 
average hourly "low by the maximum average daily "low (����), be it of return or pickup, as 
represented in the following formulation: 
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3.3.2.	Classi�ication	of	stations	according	to	their	temporal	pro�iles	

Once the ���  vectors were de"ined, Gu, Kim and Currie (2019) applied a cluster analysis 
technique (clusterization), aiming to identify groups with similar temporal pro"ile of use of the 
stations. Clusterization is a multivariate, unsupervised technique that uses continuous or 
binary variables to cluster observations, aiming to increase the internal uniformity of each 
cluster and the heterogeneity among clusters (Fávero and Bel"iore, 2017). Particularly, the  
k-means clusterization technique aims to minimize the intracluster variance (MacQueen, 1967).  

 In the non-hierarchical clustering techniques, such as k-means, the number of clusters is 
de"ined a	 priori. For this de"inition, the silhouette coef"icient, a measure of cohesion, is 
frequently used; it compares the average distance among all the elements in their cluster and 
the average distance to all the elements in each of the other clusters (Rousseeuw, 1987). 

 This procedure was applied to the average temporal pro"iles of the Bikesampa stations. Given 
the reduced use of the bicycles during the overnight period, only the pickups and returns 
occurring between 06:00 and 22:59 were considered, reducing the size of the ���vector to 34. 
The k-means clusterization and the silhouette curve were computed in the R language with the 
kmeans and silhouette functions of the cluster package.  

3.4. Spa�al autocorrela�on analysis of the clusters of sta�ons 

To assess whether the clusters of stations are randomly distributed in space, Moran's Index was 
employed; it is an autocovariance measure given by Equation 5 (Almeida, 2012). 

 + � ,
-#

∑ ∑ ./01/100/
∑ 1/'2/"&

 (5) 

where: 3:  	number of regions; 

   4:  	values of the standardized variable of interest; 

	 	 	 5�6:   values of the weight matrix 7 regarding region � and region 8; 

	 	 	 9�:    sum of the elements of weight matrix 7. 

 According to Almeida (2012), the value expected from Moran’s + is +;�< = -(n-1)-1. The null 

hypothesis (H0) is not rejected when + ≤ +;�<. In this scenario, the spatial pattern observed is 

equally likely to any other (spatial randomness). If this condition is not satis"ied, the alternative 
hypothesis (H1) is considered; it indicates positive spatial autocorrelation (similarity between 
the attribute value and the spatial location) or negative (otherwise). To visualize the spatial 
autocorrelation in each region, LISA cluster maps are commonly used. Each region with 
signi"icant local statistics is colored according with the following convention: 

• High-High: the region and the neighboring ones present high concentration of the 
phenomenon; 

• Low-Low: the region and the neighboring ones present low concentration of the 
phenomenon; 

• Low-High: the region has low concentration of the phenomenon, whereas the 
neighboring ones present inverse behavior; 

• High-Low: the region has high concentration of the phenomenon, whereas the 
neighboring ones present inverse behavior. 

 Moran’s + was independently calculated for each cluster of stations in the GeoDa software. 
The variable of interest used was the number of stations in each of the 54 zones of the  
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Origin-Destination Survey (ODS) of the São Paulo Metropolitan Region (Metrô, 2020b).  
These 54 zones cover the area of operation of the 239 Bikesampa selected for the analysis  
(see Figure 3). This choice of variable of interest is due to the limitation of Moran’s Index, which 
requires numerical variables. 

 The closeness between regions can be represented by distance or proximity matrices. The 
latter alternative considers only regions sharing borders, under the hypothesis that contiguous 
areas have greater spatial interaction (Almeida, 2012). The proximity matrix used was the 
contiguity one, of the Queen	Contiguity type, an analogy to the moves allowed to the “Queen” 
chess piece, in which the borders with an extension greater than zero are considered to be the 
contiguous vertices.  

 

 
Figure 3. Zoning adopted for calculating Moran’s Index 

 

4. RESULTS AND DISCUSSION 

The results and the discussion on the study are presented as follows. Firstly, the clusters of 
stations are presented, followed by their spatial autocorrelation analysis. 

4.1. Clusters of sta�ons 

Different values for the number of clusters were used in the k-means procedure. For choosing 
the most adequate value, the silhouette curve was employed (Figure 4). The measure of 
cohesion is maximum with three clusters, this being the value chosen for clustering the pro"iles. 
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Figure 4. Silhouette curve for different values of number of clusters 

 

 Therefore, the 239 Bikesampa stations were divided into three clusters of temporal pro"iles 
of use (see Figure 5). The location of the stations of the different clusters in the urban space of 
the region of interest is presented in Figure 6. The clusters characteristics are: 

Cluster	1	–	Balanced: normalized average "low of pickups and returns more balanced along 
the day, except in the morning peak period, when the pickup "low is slightly higher. There is an 
increase in "low between 12:00 and 13:00, and especially in the late afternoon, early evening. 
The higher normalized average "low is equal to 0.80, at 18:00. 95 stations (39.7% of the system) 
belong to this cluster. The stations are concentrated in the axis of Av. Paulista and Av. Rebouças, 
and near the Ibirapuera Park, regions with supply of services and other activities, in addition to 
residences; 

Cluster	2	–	Morning	Pickups: normalized average "low of pickups and returns unbalanced 
between the morning and evening periods. In the morning, there is a greater pickup "low, 
reaching a peak of normalized "low equal to 0.62 at 08:00. In the evening, the return "low is 
more expressive, reaching a peak of 0.73 at 18:00. 87 stations (36.4% of the system) belong to 
this cluster. These stations are on the boundaries of the system, in residential regions; 

Cluster	3	 –	Morning	 returns: normalized average "low of pickups and returns unbalanced 
between the morning and evening periods. In the morning, there is a greater "low of returns, 
reaching a peak of 0.88 at 08:00. In the evening, the pickup "low is greater, with a maximum of 
0.62 at 18:00. 57 stations (23.9% of the system) belong to this cluster. These stations are 
concentrated on Av. Faria Lima and on Av. Berrini, regions of commerce and services. 

 A visual inspection of the distribution of stations in the urban space suggest that stations in 
each cluster do not seem to be randomly distributed. The stations in Cluster	2	 –	Morning 
Pickups seem to be located on the boundaries of the system. In turn, the stations in  
Cluster	3	–	Morning returns	seem to be more concentrated on the main commercial axes of 
the city. The spatial randomness hypothesis is veri"ied by the spatial autocorrelation analysis in 
the next subitem. 

 As compared to the reference work by Gu, Kim and Currie (2019), the clustering obtained 
shows some similarity with the results for the city of Suzhou, in China; in that study, the measure 
of cohesion is also maximum with three clusters. However, the temporal patterns are not 
different. Although both systems present a cluster with gradual increase of "lows along the day, 
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in Suzhou this cluster is unbalanced and counts with one station only. In turn, in São Paulo, 
Cluster	1	–	Balanced has a balanced pro"ile and comprises about 40% of the stations.  

 

 

 

 
 

                    Legend:   

  Return  Pickup    

             Figure 5. Temporal profile of use for each station cluster 

 

 The two other clusters present two-peak temporal patterns, as observed in Suzhou. However, 
in São Paulo, both patterns are unbalanced between pickups and returns. This behavior can be 
explained by the urban structure of São Paulo, known for having work and residential poles 
concentrated in speci"ic areas of the city.  
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Figure 6. Spatial distribution of the temporal profile clusters 

 

 The results indicate peak periods in the morning and in the early evening, between 07:00 
and 09:00 o’clock and between 17:00 and 19:00, respectively, in São Paulo. For a comparison, 
the peak demand periods for trips in the São Paulo Metropolitan Region in motorized vehicles 
occur between 06:00 and 07:00 o’clock in the morning, and between 17:00 and 18:00 in the 
early evening (Metrô-SP, 2020b). Thus, the bikesharing peak demand periods occur slightly 
after the motorized mode peak periods. 

 Compared to the results of the international literature, the peak demand periods found for 
the Bikesampa system coincide with the studies conducted in Santiago and in Lyon (Mix, 
Hurtubia and Raveau, 2022; Tran, Ovtracht and D'Arcier, 2015). In turn, in Suzhou, the evening 
peak period occurs earlier, between 16:00 and 19:00 (Gu, Kim and Currie, 2019), whereas the 
cities of Barcelona and Sevilla present longer peak demand periods, which extend until 10:00 
in the morning and up to 22:00 in the evening (Faghih-Imani et al., 2017). 
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 Even though the international literature shows higher "lows in the evening period, only two 
clusters present this behavior in São Paulo. The stations in Cluster	 3	 –	 Morning returns	
present a high "low of returns in the morning, exceeding the maximum values of the other 
clusters at any other time of day. A hypothesis for this behavior would be the spatial closeness 
of these stations, allowing a larger number of shorter trips during a period. 

 Understanding the time pattern of the pickup and return "lows, especially in peak periods, is 
therefore important to prevent the stations from saturating or from being depleted, 
discouraging or inhibiting bikesharing use. 

 In practical terms, the clusters with unbalanced pickups and returns may be the target of a 
special operation. In this context, the stations in Cluster	2	–	Morning pickups	could receive 
relocated bicycles in the morning period, when the demand is higher and there is a greater 
probability that stations in this cluster be emptied. Inversely, the stations in Cluster	 3	 –	
Morning returns	could receive relocated bicycles in the early evening period. The stations in 
Cluster	1	–	Balanced are less dependent on bicycle relocation operations. 

 Relocation policies aimed at users could also be adopted between stations, stimulating 
cyclists to reposition the bicycles. An example would be implementing a reduced price for those 
that take trips in the counter"low in the peak period, thus helping to mitigate the lack of bicycles 
or of docks at the stations of unbalanced clusters. 

4.2. Spa�al autocorrela�on of the clusters of sta�ons 

The null hypothesis of random spatial distribution can be rejected for the three clusters of 
stations, since calculated Moran’s + exceeds its expected value (Table 1). 

 

Table 1 – Moran’s Global Index 

Cluster Calculated Value Expected Value 

Cluster 1 – Balanced 0.172  

Cluster 2 – Morning Pickups  0.100 -0.019 

Cluster 3 – Morning Returns  0.373  

 

 For understanding the local behavior of this statistic, Figure 7 illustrates the LISA maps, 
which indicate the areas with signi"icance equal to or less than 5%. The results indicate that: 

Cluster	1	–	Balanced: according to Figure 7a, the Jardim Europa, Jardins, Pamplona, Vila Nova 
Conceição and Vila Olı́mpia areas, regions in which residences, commerce and services coexist, 
present a “High-High” behavior. Conversely, the Granja Julieta, Chácara Flora and Joaquim 
Nabuco areas, in the southernmost, with a smaller number of jobs in services and greater 
residential use, present “Low-Low” behavior. The Clı́nicas and Campinas areas are classi"ied as 
“Low-High”, regions in which other clusters predominate; 

Cluster	2	–	Morning	pickups: Figure 7b shows that the Jardim Luzitania area presents “High-
High” behavior, very likely due to the smaller supply of jobs and larger number of residences.  
In turn, the Masp area (on Av. Paulista) has a “Low- Low” value, due to the major presence of 
stations of Cluster	 1	 –	 Balanced in the region. Classi"ied as “Low-High” regions are the 
Ibirapuera Park and Ana Rosa areas, whereas the Marechal Deodoro, Ladeira da Memória and 
Bexiga areas are classi"ied as “High-Low”. Since the stations in this cluster present a more 
dispersed pattern, there are more areas classi"ied as having transition behavior (High-Low or 
Low-High); 
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Cluster	3	–	Morning	returns: Figure 7c demonstrates that this cluster presents exclusively 
“High-High” behavior in the Berrini, Chácara Itaim, Helio Pelegrino, Jardins, Vila Nova Conceição 
and Vila Olı́mpia areas. These regions are known for being poles of jobs in services, hosting 
of"ice buildings.  

 

     
                                  (a) Cluster 1 – Balanced     (b) Cluster 2 – Morning pickups   (c) Cluster 3 – Morning returns 

       Legend:  

 Non-significant  High-High  High-Low  Low-High  Low-Low 

Figure 7. LISA cluster map 

 

 It is worth noting that the system stations do not result from a natural, non-controllable 
process, but rather from the operator decision-making, based on demand expectations, the 
characteristics of road geometry for positioning the stations and the type and intensity of 
activities in the neighborhood of the station. The location of the stations thus results from an 
anthropic, non-random event, a fact corroborated by the results of the spatial autocorrelation 
analysis.  

 Firstly, Figure 6 suggests a possible association between the land use characteristics 
surrounding a station and its pertinence to a cluster of temporal pro"ile of demand. Knowing or 
inferring a given temporal pro"ile is an information that allows orienting the operator decision-
making as regards the possible need to reposition bicycles to prevent saturating the stations, 
especially for the clusters with unbalanced pickup and return "lows (Cluster	 2	 –	Morning 
pickups	and Cluster	3	–Morning	returns). 

 Secondly, the results contribute to the discussion of new possibilities to treat the 
repositioning of bicycles. In areas classi"ied as “High-High”, for example, there is a greater 
concentration of stations of a given cluster in the area and in its neighboring zones, there 
consequently being a greater chance for the occurrence of bicycle or dock de"icit for the clusters 
of stations with unbalanced pickup and return "lows. 

 In such cases, the operator could analyze at least four distinct operation policies to reduce 
the risk of not meeting the demand for bicycles or for free docks in a station, namely: (i) 
increasing the number of docks (and bicycles) at the station, (ii) implementing pockets, (iii) 
implementing new stations in the region, and (iv) repositioning bicycles coming from other 
stations.  

 Figure 8 shows an example of the complementary character of the distinct station clusters in 
neighboring areas. The Berrini area counts on more stations with a prevalence of morning 
returns (Cluster	3	–	Morning	returns). The surplus of bicycles returned in this period can be 
relocated to stations with a greater morning pickup "low (Cluster	2	–Morning	pickups) in the 
Brooklin and Vila Cordeiro areas. In the early evening, the process is inverted. 
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Figure 8. Suggestion for rebalancing in the Berrini-Brooklin/Vila Cordeiro area 

 

5. CONCLUSION 

This research investigated the Bikesampa bikesharing system, which operates in the city of  
São Paulo. The stations were classi"ied into three clusters based on the average hourly "lows of 
pickups and returns: Balanced, Morning pickups and Morning returns. These clusters are not 
randomly distributed in space, there being a pattern for each cluster, suggesting an association 
with the land use characteristics.  

	 Cluster	1	–	Balanced has a balanced pattern between pickups and returns, with a gradual 
increase in demand along the day. This behavior is probably due to their being located in areas 
with a larger proportion of mixed land use. In turn, Cluster	 2	 –	Morning pickups	has an 
unbalanced two-peak pattern, with a larger number of pickups in the morning and returns in 
the early evening, which is possibly explained by the predominance of residential land use 
around these stations. Lastly, Cluster	 3	 –	 Morning returns	 has an unbalanced two-peak 
pattern, yet with a larger number of returns in the morning and pickups in the early evening, 
possibly explained by the greater commercial land use.   

 The results contribute to the design of new incentive and operation policies for a better 
management of the system by the operator, to make it more ef"icient and friendly to the user.  
To circumvent the critical problem of bicycle or dock de"icit in peak periods, some 
recommendations are made, especially for the stations with an imbalance between the pickup 
and return "lows. 

 The "irst suggestion is that the operator considers the creation of an incentive policy to 
reward the cyclists that take trips in the counter"low in the peak period, since these users 
indirectly participate in the bicycle repositioning process. In this sense, the operator could 
assess the impact of implementing reduced prices or other types of advantages in the 
subscription plan. 

 After that, knowing the time of day in which there is a greater probability of bicycle or dock 
de"icit at the stations, the bicycles could be repositioned in the peak periods of demand for each 
type of cluster. The stations with greater pickup in the morning are thus expected to receive 
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bicycles redirected from other stations or count on a reserve capacity in that period, whereas 
the stations with greater return in the morning, receive them in the afternoon.  

 Complementarily, given that the station clusters are not randomly distributed in space, it is 
reasonable to admit that there is an association between the temporal pro"ile of demand of a 
station and the characteristics of its surroundings. Therefore, as a recommendation for future 
works, the suggestion is studying the relationship between the clusters and the characteristics 
of the system operation, of the urban space and the socioeconomic attributes, using 
con"irmatory modeling techniques.  
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Metrô-SP (2020b) Pesquisa Origem e Destino de 2017. Disponıv́el em: <http://www.metro.sp.gov.br/pesquisa-
od/arquivos/Ebook%20Pesquisa%20OD%202017_"inal_240719_versao_4.pdf>. (Acesso em: 01/07/2020). 

Mix, R.; R. Hurtubia e S. Raveau (2022) Optimal location of bike-sharing stations: A built environment and accessibility 
approach. Transportation	Research	Part	A, v. 160, p. 126-142. DOI: 10.1016/j.tra.2022.03.022. 

Pritchard, J. P. et al. (2019) Potential impacts of bike-and-ride on job accessibility and spatial equity in São Paulo, Brazil. 
Transportation	Research	Part	A. 386-400. DOI: 10.1016/j.tra.2019.01.022. 



Baracat, T.M.; Strambi, O.; Lavieri, P. Volume 31 | Número 1 | 2023  

TRANSPORTES | ISSN: 2237-1346 15 

Schimohr, K. e J. Scheiner (2021) Spatial and temporal analysis of bike-sharing use in Cologne taking into account a public 
transit disruption. Journal	of	Transport	Geography, v. 92. DOI: 10.1016/j.jtrangeo.2021.103017. 

Shaheen, S. A.; A. Cohen e E. Martin (2013) Public Bikesharing in North America: Early Operator Understanding and Emerging 
Trends. Transportation	Research	Record, v. 2387, n. 1, p. 83-92. DOI: 10.3141%2F2387-10. 

Si, H. et al. (2019) Mapping the bike sharing research published from 2010 to 2018: A scientometric review. Journal	of	Cleaner	

Production, v. 213, p. 415-427. DOI: 10.1016/j.jclepro.2018.12.157. 

Tran, D. T.; N. Ovtracht e F. B. D'Arcier (2015) Modeling Bike Sharing System using Built Environment Factors. Procedia	CIRP, v. 
30, p. 293-298. DOI: 10.1016/j.procir.2015.02.156. 

Wang, X. et al. (2016) Modeling bike share station activity: Effects of nearby business and jobs on trips to and from stations. 
Journal	of	Urban	Planning	and	Development, v. 142, n. 1, p. 04015001. DOI: 10.1061/(ASCE)UP.1943-5444.0000273. 

Wu, C.; I. Kim e H. Chung (2021) The effects of built environment spatial variation on bike-sharing usage: A case study of 
Suzhou, China. Cities, v. 110. DOI: 10.1016/j.cities.2020.103063. 

Zhang, L. et al. (2015) Sustainable bike-sharing systems: characteristics and commonalities across cases in urban China. 
Journal	of	Cleaner	Production, v. 97, p. 124-133. DOI: 10.1016/j.jclepro.2014.04.006. 

Zhu, R. et al. (2020) Understanding spatio-temporal heterogeneity of bike-sharing and scooter-sharing mobility. Computers,	

Environment	and	Urban	Systems, v. 81. DOI: 10.1016/j.compenvurbsys.2020.101483. 

 

 

 


