
TRANSPORTES | ISSN: 2237-1346 1 

 

UAI-FI: using ar�ficial intelligence for automa�c 

passenger coun�ng through Wi-Fi and GPS data  
UAI-FI: U�lização de Inteligência Ar�ficial para contagem automá�ca de 

passageiros através de Wi-Fi e dados GPS 
Marcos Paulino Roriz Junior1, Ronny Marcelo Aliaga Medrano2, Cris�ano Farias Almeida3 

1Federal University of Goiás, Goiás – Brazil, marcosroriz@ufg.br  
2Federal University of Goiás, Goiás – Brazil, ronnymarcelo@ufg.br  
3Federal University of Goiás, Goiás – Brazil, cris*anofarias@ufg.br  

Recebido:  

13 de fevereiro de 2021 

Aceito para publicação:  

27 de maio de 2022 

Publicado:  

6 de agosto de 2022 

Editor de área:  

Helena Beatriz Be-ella Cybis 

 ABSTRACT  

An important piece of informa*on for planning public transporta*on is the number of 

passengers using the system. Several ini*a*ves have started to explore the Wi-Fi packets 

generated by passengers’ smartphones as means to obtain this informa*on. A sensing 

device located inside the bus can intercept and collect these packets. By applying filters, 

e.g., verifying if the signal strength is higher than a threshold, the sensor can infer 

passengers' presence/absence. However, such limits are set arbitrarily, leading to errors, 

for example, when close to bus stops. To address this issue, this ar*cle proposes a 

method (UAI-FI) based on an ar*ficial intelligence technique (Support Vector Machine) 

to classify the origin of packets as inside or outside the bus. To validate UAI-FI, we 

applied and compared our approach to other methods in a bus line in Goiânia/Brazil. 

The results suggest that UAI-FI outperformed exis*ng methods. Furthermore, it 

successfully classified the packet’s origin, obtaining 83.3% and 88.5% of the total 

number of passengers boarding and aligh*ng the line. Despite the overall similarity, we 

highlight that UAI-FI’s coun*ng curve presented a delay compared to the manual count 

indica*ng that the frequency that Wi-Fi packets are sent can cause the 

presence/absence of passengers to be perceived at different stops. 

 

RESUMO   

Saber a quan*dade de passageiros que u*lizam o sistema de transporte público é uma 

informação importante para planejá-lo. Várias inicia*vas começaram a explorar pacotes 

Wi-Fi gerados pelos smartphones de passageiros como meio de obter essa informação. 

Esses pacotes podem ser interceptados por sensores dentro dos ônibus. Através da 

aplicação de filtros, por exemplo, que verificam se a intensidade do sinal é maior que 

um limiar, o sensor pode inferir a presença/ausência do passageiro. Entretanto, tais 

limites são definidos arbitrariamente, podendo causar erros, por exemplo, quando 

próximos de pontos de paradas. Para resolver esse problema, este ar*go propõe um 

método (UAI-FI) baseado em uma técnica de inteligência ar*ficial (Support Vector 

Machine) para classificar a origem dos pacotes como dentro ou fora do ônibus. Para 

validar o UAI-FI, foi feito um teste e comparação com outros trabalhos em uma linha de 

ônibus de Goiânia/Brasil. Os resultados sugerem que o método obteve um desempenho 

superior as outras abordagens. Ademais, foi capaz de classificar com sucesso a fonte dos 

pacotes, contabilizando 83,3% e 88,5% do total de embarques e desembarques da linha. 

Apesar da similaridade, ressalta-se que a contagem apresentou uma defasagem 

temporal com a feita manualmente, indicando que a frequência na transmissão de 

pacotes Wi-Fi pode fazer com que a presença/ausência de passageiros seja percebida 

em paradas diferentes. 
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1. INTRODUCTION 

When planning public transportation systems, it is important to know the busloads, that is, the 

number of passengers traveling at a given period (Myrvoll et	al., 2017). This information can be 

used as an input to optimize the operation, e.g., reallocating vehicles or the number of trips to 

decrease the system overload and waiting time (Mishalani et	al., 2016).  

 Many works have started to explore the data generated by passengers’ smartphones aboard 

the vehicle to automate the process of counting passengers and obtaining the busloads (Ji et	al., 

2017; Oransirikul et	 al., 2014). The overall idea is to explore the trace of Wi-Fi packets 

automatically produced by such devices while they are inside the bus.  

 Each packet contains the smartphone identi.ier, enabling subsequent packets to trace back 

to the same passenger (IEEE, 1997). In addition, it also includes a wave data, called Received 

Signal Strength Indicator (RSSI), which indicates how close the transmitting smartphone is to 

the receiver end. Since these packets are transmitted periodically, they can be used to estimate 

the presence/absence of passengers inside the vehicle. 

 However, the parameters that .ilter the packets coming from smartphones inside the bus 

from outside noise are con.igured empirically, usually by setting arbitrary thresholds. This 

makes the application of such approaches problematic due to the complexity of estimating such 

limits and possible collateral effects (Oransirikul et	al., 2019; Paradeda et	al., 2019). 

 For example, suppose that the algorithm counts a passenger inside the bus if its devices emit 

a packet whose Wi-Fi strength is higher than a given threshold, which can be mapped indirectly 

to a distance range (e.g., few meters). This situation can lead to erroneously counting other 

passengers, such as those waiting at a stop station, since the bus can pass close to them (Dunlap 

et	al., 2016).  

 Thereby, motivated by these issues, this paper investigates the feasibility of Using Arti.icial 

Intelligence for Automatic Passenger Counting through Wi-FI signals and GPS data (UAI-FI). 

Hence, it proposes a method that uses a machine learning technique, Support Vector Machine, 

to discover the threshold limits to count and obtain the busloads. To evaluate UAI-FI, we built 

and deployed a prototype system in .ield tests to compare the passenger count produced to 

values obtained manually. We also implemented and compared existing works to our results. 

 The rest of this paper is structured as follows. First, Section 2 presents the fundamental 

concepts that underlie this work. Then, Section 3 presents and discusses the UAI-FI method, 

while Section 4 presents the experiment used to evaluate our approach. Finally, Section 5 states 

the conclusion and future work associated with the limitations of the proposed method. 

2. FUNDAMENTAL CONCEPTS 

2.1. A glimpse on Wi-Fi 

The Wi-Fi technology has been standardized by the Institute of Electrical and Electronics 

Engineers (IEEE) to enable wireless communication between devices (IEEE, 1997). As such, the 

standard de.ines a network discovery process that periodically probes (scans) nearby devices 

by broadcasting a network packet called probe	request (Freudiger, 2015). 

 All devices with a Wi-Fi chip turned on emit this packet, even those not connected to a 

wireless network. These packets are publicly broadcast on wavebands near the sender, allowing 

all nearby devices to receive them. Smartphones simultaneously send probe requests  
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to multiple channels to amplify the discovery process. The broadcasted range can reach up to 

100 meters in an open .ield and 30 meters in closed environments (IEEE, 1997).  

 Devices reached by the probe request can compute a Received Signal Strength Indicator 

(RSSI), which measures the connectivity strength between them. This indicator, described in 

decibel-milliwatts (dBm), varies from 0 to �∞, where the closer to zero, the closer the devices 

are. Thus, based on the receiving values, it is possible to indirectly estimate the distance range 

that the transmitting device is located. Alongside RSSI, each probe request also includes a value 

that globally identi.ies the smartphone that sent the packet through a digital .ingerprint known 

as Media Access Control Address (MAC address). Due to privacy concerns, some companies have 

recently randomized the MAC address .ingerprint sent in probe requests. However, several 

studies suggest that it is possible to trace back these packets to the same passenger device by 

comparing the payload data (Vanhoef et	al., 2016). 

 Since probe requests are sent periodically in public wavebands, a computer monitoring these 

frequencies can also receive them. These computers, called sniffers, can use these packets to 

infer the presence and absence of smartphones in their neighborhood. 

 To exemplify such concepts, consider the scenario illustrated in Figure 1, where a sniffer is 

located inside a bus that heads to a stop station. Here, passenger � is located inside the bus as 

well. When his/her device sends a probe request packet, it will be captured by the sniffer, which 

implies that � is in the vehicle. After �’s alight, the sniffer will stop receiving packets from 

his/her device. When this happens, the sniffer infers that A left the bus. However, this approach 

needs to handle this work.low with care. Sniffers can capture data from noise sources, e.g., from 

�’s, which is waiting at the bus stop. Hence, we need a method to .ilter passengers’ packets from 

noise to count them correctly.  

 

 
Figure 1. Example of using a sniffer to capture the presence of passengers 

 

2.2. Current Approaches 

Table 1 summarizes several strategies that explored Wi-Fi to obtain the busload. Such 

approaches usually de.ine how to .ilter packets through arbitrary limits, e.g., they check if the 

packet’s RSSI is higher than a threshold to classify them as inside the bus. This can lead to 

wrongly counting passengers at bus stops or nearby drivers. For example, Oransirikul et	al. 

(2016) reported a peak in false passengers when the vehicle arrives at a bus station. To further 

complicate, they present con.licting limits for the same features, demonstrating the dif.iculty in 

estimating them. 
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 Oransirikul et	 al. (2019) and Nitti et	 al. (2020) included a frequency attribute, which 

measures the rate that packets are sent. However, de.ining this threshold is problematic 

because such frequency is not standardized (IEEE, 1997). Therefore, it is up to the smartphone 

vendor to de.ine it. For instance, Freudiger (2015) reported that the average frequency of probe 

requests in iOS 8.1.3 is 330 seconds, while in Android 4.4.2 it is 72 seconds. Further, this rate is 

susceptible to how the smartphone is being used. For instance, the interval increases when the 

battery is low, while it decreases when the screen is turned on (Mikkelsen et	al., 2016). This 

variation can impact the algorithm's precision regarding the passenger’s origin and destination. 

For example, the device of a given passenger may be perceived in subsequent stations where 

he/she boarded since his/her device can present a delay in transmitting its .irst probe request 

packet.  

 

Table 1 – Comparison of Related Work 

Authors 
Features Used to Consider Incoming Packets From Passengers (≥) 

RSSI Number of Packets Frequency Trav. Distance Trav. Time Trav. Speed 

Oransirikul et al. (2014) �74 dBm — — — — — 

Mishalani et al. (2016) �30 dBm 10 — 900 ft — — 

Dunlap et al. (2016) �79 dBm 3 — 300 ft 1 min — 

Mikkelsen et al. (2016) �65 dBm — — —  6 min — 

Oransirikul et al. (2016) �72 dBm 3 — — 1 min — 

Ji et al. (2017) �60 dBm 10 — 400 m — — 

Afshari et al. (2019) �80 dBm 3 — — 1 min — 

Ribeiro et al. (2019) — 2 — 1000 m 10 min — 

Paradeda et al. (2019) �79 dBm 2 — — — — 

Oransirikul et al. (2019) �60 dBm 2 90 s — 90 s — 

Nitti et al. (2020) �65 dBm 5 4 min — — — 

Hidayat et al. (2020) — — — — — 1 km/h 

Chen et al. (2021) ML ML — — — — 

 

 Hidayat et	al. (2020) propose an interesting approach to classify the packet’s origin based on 

the smartphone’s “traveling speed”. If it is higher than a given threshold, the device packets can 

be associated with a passenger. They further re.ine this information by requiring that it occurs 

near bus stops (≤ 10 m) and that their timestamps adhere to the bus line schedule. While 

interesting, we highlight that the approach can fail since there is no guarantee that probe 

requests will happen at stop stations.  

 Similar to our work, Chen et	 al. (2021) use machine learning to discover the thresholds.  

They explore the total number of packets, signal strength, and scanning time. This last feature 

contemplates the period that the sniffer actively perceives the smartphone in its neighborhood. 

The expectation is that noise sources would only appear for short periods in the sniffer range,	

while the passenger’s device would be captured for longer periods. However, we note that this 

might not be necessary the case, as the transmission rate depends on how the smartphone is 

being used, e.g., a device in the passenger’s pockets sends few packets and appears for short 

periods (Freudiger, 2015). Finally, the authors test several techniques and highlight that 

Random Forest slightly outperforms (in 0.0077) other classi.ication methods (Support Vector 

Machine and K-Nearest Neighbors). Nevertheless, it seems that the paper does not mention any 

calibration phase. Instead, they use default parameters, which can compromise the model 

performance. 

 Except for Chen et	al. (2021), none of these works reported an experiment with buses to 

extract the features’ limits. Instead, to understand the data, they .iddle with the thresholds 
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empirically. Mishalani et	 al. (2016) noticed such limitations and suggested using machine 

learning to build a more robust method. As such, this work explores this path.  

2.3. Machine Learning 

The proposed method uses machine learning to discover the counting limits automatically 

instead of manually picking them. Hence, we need to provide a dataset of probe request packets 

and GPS data labeled as inside or outside the bus to discover such function (Flach, 2012).  

 The Support Vector Machine (SVM) stands out in binary classi.ication among other 

techniques due to its high perfomance (Zhang et	al., 2017). The main idea of SVM is to discover 

the best hyperplane that can separate the data into different classes, i.e., the one that has the 

largest margin between them (Cortes and Vapnik, 1995).  

 To exemplify how SVM works, consider a dataset with � �-dimensional data, where ���� is 

the �-th example (� = �1, ��). Each data is labeled to a class ���� = {�1, +1}. Consider Fig. 2 (a), 

here, there are nine (� = 9) samples with two dimensions (� = 2), x� and x , that are classi.ied 

in a square (+1) and triangle class (�1). Note that any input data ���� located in the hyperplane 

satis.ies the equation ! ⋅ � + # = 0, where ! is a weight vector �w�, … , w&�, which is normal to 

the hyperplane, and # is a constant that indicates how far the plane is from the origin. 

 To .ind the hyperplane, SVM aims to discover a vector ! such that: 

! ⋅ � + # ≥ +1   ∀����  that has class ���� = +1, and 

! ⋅ � + # ≥ �1   ∀����  that has class ���� = �1 
 These two cases can be combined into one:  

 ����/! ⋅ ���� + #0 ≥ 1   ∀���� (1) 

 

   
                                               (a)                                                                                            (b) 

Figure 2. Basic concepts of Support Vector Machines (Cortes and Vapnik, 1995) 

 

 Vectors located on the margin are known as support vectors and they strictly satisfy Eq. 2. 

Hence, let �1 and �2 be two support vectors with classes +1 and �1, respectively. Then, one can 

calculate the margin size through the dot product: 

 !3 ⋅ ��1 � �2� = �!⋅�42!⋅�5�
‖!‖ = /�2�2��0

‖!‖ =  
‖!‖ (2) 

 SVM seeks to maximize this margin by minimizing ‖!‖. For mathematical convenience, it 

minimizes the quadratic norm ‖!‖ . Based on that, the SVM problem can be stated as: 

 

min
:,;

‖<‖ + = ∑ ?���@
�A�                                     

s. t. ����/! ⋅ ���� + #0 ≥ 1 �  ?���       ∀����

where ?��� = max E0, 1 � ����/! ⋅ ���� + #0F
 (3) 
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 Figure 2 (b) shows that not all data can be linearly separated. As such, SVM introduces a 

penalty variable to allow misclassi.ications. The slack variable ?��� represents the classi.ication 

error for ����. Its value is zero if ���� is correctly classi.ied, as ����/! ⋅ ���� + #0 ≥ 1. However, if 

the data is misclassi.ied, it suffers a penalization proportional to its distance to the margin. The 

= parameter calibrates this impact. If it is small, it is preferable to maximize the margin and 

ignore some misclassi.ications. In contrast, if = is large, the error will have a higher impact on 

the objective function and, consequently, presents a smaller margin.  

 In addition, to deal with nonlinear problems, it is possible to apply a kernel function (G) that 

maps the input data from ℝI to ℝJ , with K ≥ � (Cortes and Vapnik, 1995). For example,  

Figure 2 (b) illustrates the application of a kernel function G ∶ ℝ → ℝN in a dataset that is not 

linearly separable in ℝ , but is in ℝN. SVM usually employ the following Radial Basis Function 

(RBF) kernel to project and compare data samples into a higher dimension: 

 OPQ/��R�, ��S�0 = exp/�UVx��� � x�W�V0 (4) 

 The U parameter is the inverse degree of in.luence that a single piece of data has in the 

margin. If U is large, then the radius of in.luence of a sample located far away from others is 

small. The advantage of using RBF is that it can compute the distance between projected data 

samples G��� in higher dimensions directly (Cortes and Vapnik, 1995).  

3. METHODOLOGY 

Motivated by the problem and concepts described, this section presents UAI-FI, a method based 

on three phases: building a sniffer, capturing packets and training an SVM classi.ier, and .inally, 

execution and validation. Each phase is described in the following subsections.  

3.1. Building a Sniffer  

To capture the probe requests emitted by passengers’ smartphones, we need to build a sniffer	

to monitor the packets sent in public wavebands. The sniffer should be placed inside the bus, as 

it can only intercept packets within its radius of in.luence, approximately 30 meters.  

 We recommend using embedded hardware platforms to build the device since they are small, 

cheap, and can be easily extended with other sensors (Richardson and Wallace, 2014). Thus, we 

built a sniffer using a Raspberry Pi 3B because it includes, by default, a Wi-Fi chip that can be 

used in monitor mode to capture packets. In addition, we coupled a GPS sensor (BU-353) to the 

platform to receive the bus’s position data. The complete device, shown in Figure 3, costs 

approximately US$ 80.00 and has a dimension of 85,6 x 53,9 x 17 mm. 

 

 
Figure 3. UAI-FI Sniffer: Raspberry PI 3B, with GPS sensor and Wi-Fi chip 
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 Using the Wi-Fi and GPS sensors, we obtain the following features when intercepting a 

packet: 

• MAC Address, the smartphone .ingerprint, which is used to identify the passenger; 

• RSSI, which indicates the Wi-Fi signal strength between the smartphone and the sniffer; 

• Latitude and Longitude of the sniffer. It indirectly indicates the passenger’s position in 

the bus line; 

• Vehicle speed, indicating how fast the bus was when it received the packet; 

• Sniffer timestamp, the instant where the packet was captured. 

 By using these variables, it is possible to derive the following features: 

• Distance to the nearest bus stop, which aid in verifying if the received packet occurred 

close or far from a bus stop; 

• Total number of packets received from the same device; 

• Traveled distance and the travel time that the device stayed within the sniffer's 

presence. 

 As a result, each probe request forms an input vector � ∈ ℝY containing the following 

features: RSSI, bus speed, distance to the closest bus stop, number of packets sent, traveled 

distance, and traveled time.  

3.2. Capturing Packets and Training the Model  

The second phase of the method aims to capture the packets and train an SVM classi.ier. 

Therefore, .irst, it is necessary to obtain and label them manually. Each packet is associated with 

a class � = {�1, +1}, where �1 represents those that are outside the bus (noise), and +1 

indicates the ones from passengers. This process should be done in a controlled manner. 

Speci.ically, packets should be captured using an empty bus with only known devices inside it. 

During the ride, all packets, except those produced by known devices, should be labeled as 

negative (� = �1) since they all come from noise sources. Similarly, data generated by known 

devices should be labeled as positive (� = +1). 

 After collecting the dataset, we train an SVM classi.ier to discriminate them. The dataset is 

split into two parts: training (70%) and testing (30%), as recommended by Flach (2012). The 

training dataset is used to .ind the support vectors that best separate the classes, while the test 

set is used to evaluate the accuracy of the classi.ier with unseen data.  

 During training, we try multiple SVMs with different combinations of = and U 

hyperparameters. We vary them in the following range: U, = =
�10Z, 10N, 10 , 10�, 10[, 102�, 102 , 102N, 102Z�, totalizing 81 different combinations. We also 

employ K-folding (K = 10), i.e., the training set is repeatedly sampled in 10 different subsets of 

training and validation data to cross-validate the models. Out of the possible combinations of 

SVMs, we pick the one that presents the highest mean \� score considering	the ten validation 

datasets.  

 The \� score represents the harmonic mean between precision and recall (Flach, 2012). We 

build a confusion matrix to compute its value, as it illustrates true positive (TP), true negative 

(TN), false positive (FP), and false negative (FN) contrast between the predicted classes and 

ground truth. Using these values, one can compute the metric as \� = 2 × ^_`abcbde × f`aghh
^_`abcbde 4 f`aghh, where 

precision is expressed as 
ij

ij1kj and recall as 
ij

ij1kl.  Precision represents the percentage of 
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packets UAI-FI assigned as inside the bus that is correct compared to	the manual labeling. On 

the other hand, recall expresses the fraction of all passenger’s packets that UAI-FI could retrieve 

and assign as inside the bus accordingly.  

3.3. Execu�on and Valida�on 

The last phase aims to incorporate the SVM classi.ier into the counting algorithm. In this step, 

researchers should conduct experiments on bus routes with ordinary passengers by capturing 

all packets generated throughout the trip. This dataset is used as input to count the number of 

passengers on the bus. Note that the objective here is different from the previous phase, as it 

aims to obtain the busload, whereas the last phase's goal was to .ind the function limits that 

classify the packets as inside or outside. 

 To count the bus passengers, UAI-FI follows the algorithm shown in Figure 4. First, it derives 

the input features from the captured data. Second, it predicts the packet location using the SVM 

classi.ier. If outside the bus, it proceeds to process the next packet. However, if it is inside, that 

passenger should be counted. Using the MAC address, the algorithm veri.ies if he/she has 

already been considered. If not, it increments the number of passengers and stores the packet 

for further queries. On the contrary, the algorithm updates its last seen timestamp if the 

passenger has already been counted. Finally, researchers must manually register the number of 

passengers who boarded and alighted the bus line. By doing so, it is possible to compare the 

results with the ones obtained by UAI-FI.  

 

 
Figure 4. Algorithm for counting passengers 

 

4. EXPERIMENTS AND RESULTS 

To evaluate UAI-FI, we conducted experiments on a bus line of the Metropolitan Transit 

Network of the city of Goiânia, Goiás, Brazil. The analyzed bus line (305), illustrated in Fig. 5, 

has an extension of 12.41 km and interconnects two terminals. We choose to analyze this route 

as it is dif.icult to obtain its busload using other methods, such as those based on smartcards, 

since passengers do not swipe their cards when alighting in the terminal stations. 

4.1. Captured Data  

We captured the positive, negative, and ordinary packets on three days, totaling 10 trips. All 

experiments were conducted on working days from 09:00 to 12:00 on June 6 (Thursday), June 

12 (Wednesday), and June 20 (Thursday) of 2019. During training rides, on empty buses, we 

carried 13 devices inside the vehicle.  
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 The collected dataset contains a total of 20,470 packets. This dataset was further 

preprocessed to remove duplicates, as a smartphone can broadcast multiple probe requests 

simultaneously to different Wi-Fi channels (Freudiger, 2015). Hence, we summarize the packets 

received by a given MAC in the same instant by taking a mean of its features (e.g., RSSI, bus 

speed). As a result, the preprocessed dataset contains 9,702 unique probe requests packets. 

Figure 6 illustrates a histogram of the features of the collected dataset. The histogram is in 

percentages, as the number of packets outside the bus signi.icantly overcomes those insides.  

 As expected, there is an overlap in the RSSI of packets coming from devices located inside the 

bus from noise sources, see the interval from �80 dBm to �70  dBm as an example. For instance, 

a method that only considers probe requests whose signal strength is higher than �70 dBm as 

inside the bus would discard 21.6% of passengers’ packets.  

 

 
Figura 5. Route 305 in Goiânia, Goiás, Brazil. Adapted from RMTC (2018) 

 

 We expected the bus	 speed and distance	 to	 the	closest	bus	 stop features to be signi.icantly 

larger for passengers, as their packets could be captured between stop stations. However, a 

closer look identi.ied several noise sources in the same situation, potentially coming from 

nearby drivers and local stores. On the other hand, the traveled distance presented different 

values for the two cases. Over 91.4% of noise packets stay within the bus range for less than one 

km. The travel time feature also presented similar results, as over 80% of packets from outside 

sources stayed within the sniffer range for less than .ive minutes.  
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 Finally, note how the number of packets received differs depending on the data origin. For 

example, the histogram shows that 84.3% of noise devices sent less than .ive probe requests, 

while it is 39% for those inside the bus. Combining these features, we aim to overcome their 

fuzziness and obtain the limit that separates them. 

 

 
Figure 6. Histogram of collected packets’ features 

 

4.2. Training and tes�ng 

We trained 810 SVM classi.iers as we employed 10-fold cross-validation and used 81 different 

combinations of = and U with an RBF kernel. The model that yields the best result presented 

the parameters = = 100 and U = 1. These values indicate that the best classi.ier is the one that 

signi.icantly penalizes the errors committed (=). Further, a standard value for U means that, 

although the misclassi.ication penalty is signi.icant, the in.luence of packets that are far away 

from others is reduced. Such value prevents the SVM from over.itting since outliers have a low 

in.luence on the remaining data.  

 As a result, UAI-FI presented a mean precision of 99.6% and a recall of 99.7% considering	

the 10 validation dataset used in training, yielding a mean \� score of 99.7%. We obtained 

similar results when we applied the model in the isolated test dataset, a 99.9% precision and a 

recall of 98.5%, resulting in a \� score of 99.2%. This means that over 99% of the manually 

labeled packets, from known devices and outside sources, are correctly classi.ied. Such results 

suggest that UAI-FI can discriminate the packets’ origin successfully. 
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 To further compare UAI-FI, we implemented three different algorithms described in 

Subsection 2.2. The results, shown in Table 2, indicate the confusion matrices for the methods 

on the test dataset, i.e., the data separated from training. Further, Figure 7 shows the number of 

passengers detected by each algorithm in a given trip of the test dataset.  

 The .irst comparison relates to the machine learning approach reported by Chen et	 al. 

(2021), which uses RSSI based-values, such as mean and standard deviation, alongside the total 

number of packets and scanning time received in a time window. The approach aggregates the 

receiving packets in temporal batches of 20 seconds. After that, it applies a Random Forest 

classi.ier to the collected data. To compare their approach, we reimplemented their algorithm 

and trained a Random Forest using the parameters they recommend, 11 trees and with depth 

equal to 7, in the same training dataset we used for UAI-FI. Table 2 (b) reports their result in the 

test dataset.  

 

Table 2 – Comparison of UAI-FI with Related Works 
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 (c) Afshari et al. (2019)   (d) Ji et al. (2017) 

 

 
Figure 7. Number of passengers detected by each algorithm in a given trip of the test dataset 

 

 When classifying the packet’s origin, the approach presented a precision of 96.7% and a 

recall of 74.4%, resulting in a \� score of 85.7%. However, a closer look shows that the algorithm 

counted several passengers from noise data, see Figure 7. A possible reason for this issue is the 

lack of distance or temporal features. A noise packet presenting a high RSSI signal strength can 

be classi.ied as inside the bus since the approach analyzes each batch individually. 
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 To overcome the duration problem, the .iltering algorithm described in Afshari et	al. (2019) 

counts a passenger only if his/her smartphone stays within the sniffer range for more than 30 

seconds and sends at least 2 packets with an RSSI higher than �80 dBm. The approach 

presented a precision of 94.5% and a recall of 86.1% concerning the packets associated with 

inside the bus, resulting in an \� score of 90.1%. Yet, the algorithm also counted noise data as 

passengers, as shown in Figure 7. This is because smartphones only need to send few packets 

and stay within the sniffer ranger for a short period to be considered inside the bus.  

 On the other hand, Ji et	al. (2017) presented a conservative algorithm requiring smartphones 

to ‘travel’ with the bus for at least 400 meters and send more than 10 packets with a mean RSSI 

value higher than �60 dBm to be considered as inside the vehicle. Consequently, the method 

has a high precision (100%). However, it fails to detect several passengers (a recall of 55.5%), 

having an accuracy of 71.4%. We understand that such recall is due to many smartphones 

presenting a low frequency in transmitting probe requests. 

 As can be seen, it is complicated to tinker with the parameters to count the passengers that 

are inside the vehicle. Soft limits lead to false positives, while hard thresholds fail to detect 

passengers rightfully. Further, the machine learning method proposed by Chen et	al. (2021) also 

presented dif.iculty in counting the passengers. A possible reason is that it uses solely RSSI-

based features and analyzes packets in individual batches. By including distance and temporal 

features in the method, in addition to a calibration phase and counting strategy, UAI-FI was able 

to learn the parameters and provide an \� score of 99.2%, correctly detecting all passengers in 

the test with only one false positive. 

4.3. Valida�on with Ordinary Passengers 

We also tested the method on bus trips with ordinary passengers. During this test, we manually 

counted that 72 passengers boarded and 35 exited the bus throughout the route’s 32 stations, 

see Figure 8. In parallel, UAI-FI counted a total of 60 passengers boarding and 31 exiting the 

bus, i.e., by incorporating the SVM model, which has an accuracy of over 99% for classifying the 

packet’s origin, the method was able to imply for 83.3% and 88.5% of the total number of 

passengers that boarded and exited the vehicle.  

 As expected, the total load in UAI-FI is inferior to the manual approach, as not all passengers 

have a smartphone or leave Wi-Fi on. Despite this, the results suggest that the method detects 

a signi.icant part of the passengers. Speci.ically, note that UAI-FI counting curve shape is similar 

to the one obtained manually, but presents a delay of 2 to 5 bus stops. One explanation for this 

phenomenon is that some bus stops are reasonably close. Hence, the time to travel to the next 

stop can be lower than the frequency used by the passenger’s device to send packets. For 

example, we observed that the time required for the vehicle to travel from bus stop 2 to 3 was 

31 seconds. If the passenger’s smartphone takes longer than this to send a packet, he/she will 

only be counted in the following stations. As reported by Freudiger (2015), some devices can 

take several minutes to transmit a packet, explaining the delay in the counting curve.  

 The delay phenomenon can be grasped when viewing the boarding and alighting curves at 

each bus stop, see Figures 8 (b) and (c). Note how UAI-FI results are slightly out of phase with 

the ground truth. For example, the manual curve counts 12 passengers at the .irst bus stop, the 

terminal station. However, due to the proximity of consequent bus stops, this was only re.lected 

in UAI-FI at the fourth bus stop. 
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(a) Total load inside the bus 

 
(b) Boarding curve 

 
(c) Alighting curve 

Figure 8. Number of passengers that are boarding or alighting at each bus stop 

 

 A similar situation occurs when considering the load of passengers exiting. Note that in some 

cases, UAI-FI associates the passenger’s exit with a bus stop before the one he left. One of the 

reasons for this is that that given station is the closest one to the last packet that UAI-FI received 

from that passenger.  

 Finally, it is worth noting the similarity between UAI-FI and ground truth curves throughout 

the bus line, especially its evolution. The data suggests that they follow a similar trend within a 

given delay. 

5. CONCLUSION 

This work investigated the viability of using Wi-Fi packets emitted by passengers’ smartphones 

inside the bus, alongside the vehicle GPS data, as means to obtain the busload. The main reason 

for doing so is that unrestricted use of the Wi-Fi technology can eventually lead to counting false 

passengers, speci.ically when handling data from noise sources, such as nearby drivers.  

To address this problem, we proposed UAI-FI, a method that uses machine learning to learn 
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how to discriminate the packet’s origin. The method relies on Support Vector Machines, a 

technique that aims to .ind a hyperplane which can separate the data, in our case, the receiving 

packets. 

 We applied the method on a bus line in the city of Goiânia, Goiás, Brazil. During the controlled 

experiments, we manually labeled packets as inside and outside the bus. Using the training 

dataset, UAI-FI was able to obtain an \� score of 99.7% for the packet’s origin, i.e., the method 

was able to distinct packets from passengers from outside sources in over 99% of the cases. 

When considering the test dataset, the method also presented robust results, with an \� score 

of 99.2%. Furthermore, our results indicate that UAI-FI was able to outperform related works. 

 We also validated UAI-Fi with ordinary passengers in the same bus line. During the test, we 

manually observed that 72 passengers boarded the vehicle, while 35 exited the bus throughout 

the route. UAI-FI detected 60 passengers boarding and 31 exiting the vehicle in the same period. 

This result suggests that the method was able to imply respectively 83.3% and 88.5% of the 

total number of passengers that boarded and exited the bus considering the manual count. 

 Despite an overall similarity with ground truth, the results indicate a delay in UAI-FI’s 

counting curve and, consequently, in the busload obtained. A closer look reveals that the 

primary suspect for this problem is the frequency that packets are received. Since Wi-Fi does 

not standardize the transmission rate that devices should emit probe requests, it can happen 

that a passenger board a vehicle at a bus stop and his/her smartphone only send in packet 

further down the bus line, e.g., in subsequent stations. Since UAI-FI only detects the passenger 

when it receives the packets, this can delay the counting curve. For example, the results indicate 

that the busload at the .irst station was only detected in the fourth station by UAI-FI.  

 This problem can make it challenging to capture short trips, which can impact the overall 

busload. Furthermore, it complicates the extraction of origin-destination matrixes. In future 

works, we intend to investigate if clustering the .irst and last location of the same MAC 

addresses throughout a large timespan can yield a more precise origin and destination pair.  
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