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 ABSTRACT 

The available benchmarks for the dynamic versions of the Pickup and Delivery Problem 

with Time Windows (PDPTW) and the Dial-A-Ride Problem (DARP) do not share the 

same characteris"cs and may not cover all the range of characteris"cs of real situa"ons. 

We analyze sets of instances of the dynamic PDPTW (DPDPTW) and the dynamic DARP 

(DDARP) currently available for use, and the methods used to generate them from sta"c 

instances. We apply each dynamiza"on method to each of the sta"c instances that were 

originally used by these methods. The resul"ng dynamic instances are analyzed with the 

measures of degree of dynamism and urgency, as well as with the number of sta"c re-

quests and the correla"on between lower limits of the pickup "me window and the 

requests arrival "mes. The results show that the obtained dynamic instances present 

low variability in the degree of dynamism and urgency, irrespec"ve of the method or 

sta"c instance used for dynamiza"on. 

 

RESUMO 

As instâncias de benchmark disponíveis para as versões dinâmicas do problema de co-

leta e entrega com janelas de tempo (PDPTW - Pickup and Delivery Problem with Time 

Windows) e do problema dial-a-ride (DARP - Dial-A-Ride Problem) não compar"lham as 

mesmas caracterís"cas e não necessariamente cobrem todas as caracterís"cas de situ-

ações reais. Analisa-se conjuntos de instâncias de PDPTW e DARP dinâmicos (DPDPTW 

e DDARP) atualmente disponíveis para uso e os métodos usados para gerá-los a par"r 

de instâncias está"cas. Cada método de dinamização é aplicado a cada instância está"ca 

originalmente usada por eles. As instâncias dinâmicas resultantes são analisadas com as 

medidas de grau de dinamismo e urgência, bem como pelo número de pedidos está"cos 

e a correlação entre os limites inferiores das janelas de tempo de coleta e os instantes 

de chegada dos pedidos. Os resultados mostram que os conjuntos estudados apresen-

tam baixa variabilidade de grau de dinamismo e urgência independentemente do mé-

todo ou da instância está"ca usados para a dinamização. 

Keywords: 

Dynamiza"on.  

Benchmark instances.  

DDARP. 

DPDPTW. 

 

Palavras-chaves: 

Dinamização. 

Instâncias de benchmark.  

DDARP. 

DPDPTW. 

DOI:10.14295/transportes.v28i4.2412 

 

1. INTRODUCTION 

Dynamic vehicle routing problems have been the subject of research for nearly three decades 

(Psaraftis et	al., 2015). Derived from classic vehicle routing problems (VRP), such as the dial-a-

ride problem (DARP) and the pickup and delivery problem with time windows (PDPTW), the 

dynamic problems seek to model cases in which one or more parameters of the problem are not 

fully known a	priori and may vary during the period of operation. 

 Among the dynamic vehicular routing problems, the dynamic dial-a-ride problem (DDARP) 

(Psaraftis, 1988) and the dynamic pickup and delivery problem with time windows (DPDPTW) 

(Dumas et	al., 1991) are of great interest for the development of new urban transport technol-

ogies. These are the problems that need to be solved when a dynamic ride-sharing service is 
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needed (Agatz et	al., 2012; Alonso-González et	al., 2018), or when timely parcel delivery is re-

quired (Pankratz, 2005). Currently, some companies provide such services (UberPool, Via, 

UBus, UberEats, Rappi, etc.). However, with the expected technological advances in the area of 

connected vehicles, automated driving and the diversi6ication of public transport introduced 

mainly by mobility as a service (MaaS) systems, algorithms for solving DDARPs and DPDPTWs 

in less time and providing a better result are increasingly necessary (Fulton et	al., 2017). 

 The idea of using computational experiments in this context is to be able to generate results 

on the ef6iciency and computational time required by different algorithms and methods that are 

available for the solution of these problems in order to compare their performance. In order to 

obtain results that can be compared between articles without the need of rerunning the com-

putational experiments already performed by other authors, it is necessary that the same sce-

narios are used. Moreover, a series of characteristics should be present in these scenarios to 

re6lect real applications (Uchoa et	al., 2017). In the area of static VRP it is common to have ex-

tensively used sets of canonical scenarios that facilitate the comparison between algorithms 

(Mendoza et	al., 2014, Uchoa et	al., 2017). These are called sets of benchmark instances. How-

ever, the benchmark instances for dynamic vehicle routing problems (Pillac et	 al., 2013; 

Maciejewski et	al., 2017) do not share the same characteristics and may not cover the full range 

of characteristics from real situations.  

The purpose of this article is evaluating benchmark instances of DDARPs and DPDPTWs that 

are accessible and available for use and the dynamization methods used for obtaining these 

dynamic instances from static instances. The focus is on how requests are distributed through-

out the systems’ period of operation. Thus, two measures proposed by Van Lon et	al. (2016), 

urgency and degree of dynamism, that help in identifying the temporal characteristics of the 

instances, are used. The dynamization methods are brie6ly described. Then, each method is ap-

plied to different sets of static instances and the degree of dynamism and urgency of the result-

ing dynamic instances are evaluated. Given that a good set of dynamic instances must cover 

most of the degree of dynamism and urgency spectrum, our aim is to evaluate the dispersion of 

these metrics for some datasets. The number of static requests and the correlation between 

lower limits of the pickup time window and the requests arrival times are also analyzed. It is 

shown that dynamic instances analyzed present low variability in their measures of degree of 

dynamism and urgency. 

 It is expected that the provided results will ease the process of searching and selecting sets 

of dynamic instances for use in computational experiments and in testing new algorithms. Al-

ternatively, the results may assist in the selection of a method for generating dynamic instances 

that are more appropriate to the research goal. 

 The de6initions of the problems of interest are presented in Section 2. In Section 3, the sets 

of dynamic benchmark instances and dynamization methods are described. Section 4 intro-

duces the measures of degree of dynamism and urgency, followed by an assessment of the dy-

namization methods and the dynamic instances obtained from static instances. Finally, Section 

5 provides the concluding remarks. 

2.  FORMAL DEFINITION OF DYNAMIC PROBLEMS  

This section presents the formal de6initions of the DARP, the PDPTW, the DDARP and the 

DPDPTW based on Cordeau and Laporte (2003). To this end, 6irst the de6inition of the static 

DARP is presented, based on which the other three problems are then de6ined. 
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2.1. DARP 

The DARP consists of a set of passenger requests for transport between different pickup and 

delivery locations that must be met by a 6leet of vehicles capable of carrying more than one 

passenger at a time. The goal is to 6ind a set of routes for the vehicles in the 6leet that minimizes 

the time and/or cost to ful6ill all requests. 

 Each request has a pickup location and an associated time window that identi6ies the upper- 

and lower-time limits in which the user wishes to be picked up for the trip. Similarly, the 

transport request also has a passenger destination and a time window for delivery. Despite of 

having de6ined a time window for the desired start and end of his trip, the passenger also ex-

pects his journey to take no more time than what he considers acceptable. 

 The DARP can be de6ined by a complete directed graph �(�, �), where � are the nodes and � are the arcs of the graph, with � = � ∪ 
 ∪ ��, ������, � = ���, … , ���, 
 = �����, … , ����, 

and � the number of requests. The subsets � and 
 contain, respectively, the pickup and deliv-

ery nodes of the requests, while the nodes � and ����� represent the origin and destination of 

the vehicles. All vehicles in the 6leet must start their routes at node � and end them at node �����. To each request � ∈ �1, … , �� a pickup node �� ∈ � and a delivery node ���� ∈ 
 are 

associated. To each arc ��� , ��� ∈ � is associated a cost �(�,�) and a travel time �(�,�). 

 Each vehicle � ∈ �, with � the set of available vehicles, has a capacity  ! and a maximum 

total route time "!. To each node �� ∈ � there is an associated load #� and a non-negative service 

time $�, with $ = $���� = 0 and # = −#����. 

 The pickup time window is de6ined by '(�, )�*, with (� and )�  denoting the lower and upper 

limit for the start of pickup at node �� , respectively. Analogously, the delivery time window is 

given by '(���, )���* for delivery at node ����. The maximum travel time of a request, ,� , is 

determined by the amount of time the passenger considers acceptable for his journey. 

 Finally, a time interval, called planning horizon, is de6ined as '0, -*. The time that corre-

sponds to instant zero represents the beginning of the operation, when all vehicles are in the 

initial node (�) and all users are waiting to be picked up at their respective origins. The time 

instant - denotes the end of the operation, when all the vehicles have completed their routes 

and are at the 6inal node (�����), having taken all users from their respective origins to their 

destinations. The time windows of every node must be contained in the time interval '0, -*. 

2.2. PDPTW 

As in the DARP, the PDPTW has a set of transport requests with different origins and destina-

tions and associated time windows. It also has a 6leet of vehicles with the capacity to handle 

more than one request at a time. However, the requests in a PDPTW refer to the transport of 

goods instead of passengers. For that reason, the only difference between the de6inition of the 

DARP and the PDPTW arises (Parragh et	al., 2008). In the de6inition of the DARP presented in 

Subsection 2.1, the parameter ,�  represents the maximum travel time of a request, which limits 

the total time that a passenger wishes to remain in the vehicle. However, for the PDPTW this 

restriction is not necessary since the cargo does not suffer any discomfort with the delay in 

travel time. Therefore, the same de6inition presented previously for the DARP can also be used 

for PDPTW, however, for the latter, the parameter ,� = ∞, ∀� ∈ �. 
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2.3. DDARP and DPDPTW 

In the de6initions of the DARP and the PDPTW, presented in Subsections 2.1 and 2.2, respec-

tively, requests are fully known before solving the problem and stay immutable through the so-

lution application. Therefore, they are static problems (Psaraftis, 1988). Differently, dynamic 

problems receive data in real time during operation. In this case, requests are sent by users at 

any time between the start and end of the planning horizon, requiring new computation of so-

lutions. 

 In dynamic problems each request has an arrival time 0�, ∀� ∈ �, which represents the exact 

moment the transportation system receives the request’s data. This new data can then be used 

to recalculate vehicle routes. Because of this, all request arrival times must be less or equal than 

the lower limit of the pickup time window ((�). 

 The DARP and the PDPTW de6initions previously described are therefore modi6ied with the 

addition of this set of parameters, i.e., the requests arrival times, and the corresponding con-

straint. This results in a succinct de6inition of their respective dynamic problems: the DDARP 

and the DPDPTW. 

3.  SETS OF BENCHMARK INSTANCES AND DYNAMIZATION METHODS 

This section presents the sets of dynamic benchmark instances of the DDARP and the DPDPTW 

and the dynamization methods used to derive them from static benchmark instances. Berbeglia 

et	al. (2012), Pureza e Laporte (2008), Pankratz (2005) and Fabri and Recht (2006) apply each 

a different method to convert static instances into dynamic ones. These sets were chosen be-

cause the related data is freely available for access on the internet (Pankratz e Krupczyk, 2009). 

The static characteristics of the instances are not presented in this article; for detailed infor-

mation, the reader is referred to the corresponding articles cited in each of the following sub-

sections. Tables summarizing the static instances are provided by Eccel (2019). 

 Two other sets of dynamic instances are freely available. One set was created arti6icially in 

order to replicate the behavior of an urban environment, with peak hours and a concentrated 

demand in the city center (Gendreau et	al., 2006). The other set is based on real data, collected 

from one medium and one large sized courier companies operating in Vancouver, Canada (Mi-

trovic-Minic and Laporte, 2004). Since these two sets do not involve dynamization, they are not 

analyzed in this paper. The reader is referred to Eccel and Carlson (2019) for an analysis of 

urgency and degree of dynamism of these two sets. 

3.1. DDARP instance sets and method proposed by Berbeglia et al. (2012) 

Berbeglia et	al. (2012) used two different sets of instances for their computational experiments, 

each derived from different sets of static instances. In the 6irst set they used the static instances 

proposed by Ropke et	al. (2007) as a basis. In the second, the static instances presented by 

Cordeau and Laporte (2003) were used. In both cases, they chose to use instances whose num-

ber of requests was forty or more. 

 Both sets were dynamized using the following technique. A pair of parameters (1, 2) was 

de6ined. Parameter 1 ∈ '0,1* de6ines the percentage of requests known at the beginning of the 

time horizon. If 1 = 0 the problem is completely dynamic. If 1 = 1 the problem is completely 

static and all requests are known in advance. The parameter 2 represents a time interval  
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for the system to react to dynamic requests. That is, the interval between the arrival of a request 

and its pickup is always greater than 2. 

      Given a request �, the value 0�345675 is an arrival time upper limit which enforces the possibility 

to serve the request in time. Thus: 

 0�345675 = min;)�, )��� − �(�,���) − $�<. (1) 

 Therefore, the request arrival time can be de6ined as: 

 0� = 0�345675 − 2 (2) 

 Berbeglia et	al. (2012) use the parameters 1 = 0.25 and 2 = 60 min for the dynamization of 

the set of instances presented by Ropke et	al. (2007). For the set of instances from Cordeau and 

Laporte (2003), the conversion into a set of dynamic instances used the parameters 1 = 0.25 

and 2 = A(60; 240), with A(0; D) representing a random variable with uniform distribution in 

the interval '0, D*. In addition, Berbeglia et	al. (2012) uses the Euclidean distance as a value for 

the travel time between two points, thus �(�,���) can be computed using the distance between ��  and ����. 
 In this paper, when the dynamization method by Berbeglia et	al. (2012) is applied, we make 1 = 0, since our interest is to obtain completely dynamic cases. Note, however that choosing 1 = 0 does not mean that static request will not exist, but just that this type of request is not 

enforced. The same values of 2 are used. 

3.2. DPDPTW instance sets and method proposed by Pureza and Laporte (2008) 

The DPDPTW instances proposed by Pureza and Laporte (2008) were generated by dynamizing 

the static instances with 100, 200 and 400 nodes (50, 100 and 200 requests) proposed by Li 

and Lim (2003). Pureza and Laporte (2008) de6ine the request arrival time as: 

 0� = min;(�, max;A(1; 5), )� − �(,�) − 2<<, (3) 

with �(,�) the average travel time of a vehicle that wants to pick up the request �. For each of the 

PDPTW instances, four DPDPTW instances were generated with different reaction time values 

(2) equal to 0, 100, 200 and 300.  

3.3. DPDPTW instance sets and method proposed by Pankratz (2005) 

Pankratz (2005) created two sets with a total of 5600 DPDPTW instances. These instances are 

based on the 100-node PDPTW instances proposed by Li and Lim (2003). Pankratz (2005) dy-

namized the instances by calculating the last arrival time for each request � ∈ � by: 

 0�345675 ∶= min;)�, )��� − �(�,���) − $�< − �(,�). (4) 

Subsequently, each request is assigned an arrival time calculated by: 

 0� = H ∙ 0�345675, (5) 

with H ∈ '0.1,1.0*, in steps of 0.1.  Like 2, the parameter H also represents a reaction time to 

dynamic requests, however, instead of being a value of time it is a percentage. For each of the 

6ifty-six PDPTW instances, ten DPDPTW instances were generated, one for each of the possible 

values of H, resulting in a total of 560 dynamic instances. 

3.4. DPDPTW instance sets and method proposed by Fabri and Recht (2006) 

The instances proposed by Fabri and Recht (2006) were based on all PDPTW instances of Li 

and Lim (2003). To make the instances dynamic, they draw the request arrival time from: 

 0� = A�0; min;(�, )��� − �(�,���)<�. (6) 
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 Compared to the previous three dynamization methods, this method does not show an ex-

plicit parameter for the reaction time to dynamic requests. This is implicitly modelled using the 

uniform distribution for the de6inition of the request arrival time. 

4.  ANALYSES OF BENCHMARK INSTANCES AND DYNAMIZATION METHODS 

In this section, we introduce the metrics of urgency and degree of dynamism proposed by Van 

Lon et	al. (2016). These metrics are then used for analyzing the dynamization methods de-

scribed in Section 3. We applied the four dynamization methods by Berbeglia et	al. (2012), Fabri 

and Recht (2006), Pankratz (2005), and Pureza and Laporte (2008) to all the static instances in 

Ropke et	al.	(2007), Cordeau and Laporte (2003), Li and Lim (2003). This resulted in twelve 

generated dynamic datasets (sets of dynamic instances) to be evaluated with respect to urgency 

and degree of dynamism. Because some methods, nevertheless, create static requests, their 

number is computed. As seen in the previous section, the lower limit of the pickup time widow 

plays an important role in some methods, therefore their correlation with the requests’ arrival 

times is also analyzed. 

4.1. Degree of dynamism  

For Van Lon et	al. (2016), the degree of dynamism measures the continuity with which transport 

requests are received by the system. In other words, it relates to the distribution of request 

arrival times within the planning horizon. Therefore, the more distributed the request arrival 

times are, the higher the value of the degree of dynamism is. The degree of dynamism ranges 

from zero to one, with zero being a scenario in which all requests take place at the same time 

and one a scenario in which requests are equally spaced within the planning horizon. 

 Figure 1 shows six different hypothetical instances, each one with a different degree of dy-

namism. In the 6igure, each graph depicts a scenario with a total of ten dynamic requests. In 

Figure 1(a), all arrival times are equally spaced and evenly allocated at the planning horizon. 

This scenario is considered to have a high degree of dynamism (equal or close to 1). From Figure 

1(b) to Figure 1(f) the intervals between arrival times of request are gradually decreased cre-

ating clusters of requests that, eventually, become a single cluster. In Figure 1(f) all the request 

arrival times are roughly equal, thus the corresponding scenario has low degree of dynamism 

(equal or close to zero) (Van Lon et	al., 2016). 

 

 
Figure 1. Hypothetical instances with varying degree of dynamism (Van Lon et al., 2016) 
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 In order to calculate the dynamism of an instance Van Lon et	al.	(2016) de6ine a list (∆) of 

interarrival times: 

 ∆= �K�, K�, KL, … , K�M�, � = ;0� − 0�  | O = � + 1 ∀� ∈ �<, (7) 

with K� the interarrival time between the requests � and � + 1 and |∆| = � − 1 the list size. Note 

that the interarrival times in ∆ correspond to intervals for which the transportation system is 

unchanged in terms of solution. Furthermore, the list is organized in chronological order. 

 Van Lon et	al.	(2016) also de6ine a perfect interarrival time, Q, that represents the scenario of 

100 percent degree of dynamism: 

 Q =  R�.  (8) 

 This enables the computation of interarrival times deviation, S� , with respect to the perfect 

interarrival time: 

 S� = TQ − K� ,                               if � = 1 and K� <  Q Q − K� +  XMYZX ∙ S�M� , if � > 1 and K� <   Q0,                                         otherwise.                  (9) 

 Then, the total scenario deviation is de6ined as:  
c = d S�

|e|
�f� . 

 However, the total scenario deviation should be normalized by its maximum possible value 

(c̅), which is de6ined by:  
                                        c = d Sh�

|e|
�f� .  

with: 

 Sh� =  Q −  i XM YZX ∙  S�M� ,   if � > 1 and K� <  Q0,                         otherwise.                 (12) 

     Van Lon et	al. (2016) de6ine the degree of dynamism as: 
 j = 1 − kk (13) 

where the division of c by c̅ represents the normalized total scenario deviation of  

interarrivals despite the perfect case. The value of this division is contained in the interval '0, 1* 

and has high values for low degrees of dynamism. To render the measure more intuitive, Van 

Lon et	al.	(2016) subtracted this value from 1. 

4.2. Urgency 

The urgency (l�) represents the reaction time available to the transport system so that it can 

ful6ill the request and is given by (Van Lon et	al., 2016): 

 l� = )� − 0�. (14) 

 Figure 2 shows two requests with distinct values of urgency. The case in Figure 2(a) repre-

sents a scenario with high urgency whereas the case in Figure 2(b) represents a scenario with 

low urgency. Note the longer l� for the latter. 

 Since the urgency value represents the available reaction time of one request, low values of l� are related to high urgency requests. The mean and standard deviation of the urgency of all 

requests gives a measure of urgency for a given instance. 

 

(10) 

(11) 
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Figure 2. Hypothetical requests with distinct values of urgency (Van Lon et al., 2016) 

 

4.3. DistribuAon of the degree of dynamism and urgency 

Each graph in Figure 3 represents the result of a different generated dynamic dataset. Each 

point in the graph corresponds to the normalized average urgency (vertical axis) and dynamism 

(horizontal axis) values of one dynamic instance of a set. The average urgency normalization 

was done in such a way that the value zero represents an average urgency equal to zero and the 

value one represents the highest average urgency found within all the generated dynamic  

datasets. 

 

  
Figure 3. Scatter plots of normalized average urgency and dynamism for all instances of each generated dynamic dataset 

 

  The accumulation of points in Figure 3 shows the lack of diversity in the generated dynamic 

datasets. None of the generated dynamic datasets evenly cover the dynamism and urgency spec-

trum. Most of them have low degree of dynamism, while the slightly larger degrees of dynamism 

obtained from the static datasets of Li and Lim (2003) may be related to the characteristics of 

the instances. 
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 Clearly, Pankratz (2005) obtained a better distribution of values in the whole range of ur-

gency. The values of urgency seem to be more related to the method used, although again the 

static dataset from Li and Lim (2003) seems to result in dynamic instances covering almost the 

whole range of urgency values, except when the method by Berbeglia et	al. (2012) is used. As 

matter of fact, in all three dynamic datasets created using the method by Berbeglia et	al.	(2012) 

the urgency values accumulated in one or two clusters. This is a re6lex of using only a small set 

of values for β.	In the case of the static datasets by Ropke et	al.	(2007) and Cordeau and Laporte 

(2003) it is easy to distinguish between the instances that are generated using a 6ixed value of 

β	(the lower cluster) and the ones that are generated using a uniform distribution (the upper 

cluster). 

 Figure 4 shows the same values of degree of dynamism (left) and urgency (right) shown in 

Figure 3, however in the form of a box plot. The left side of each box represents the 6irst quartile  �, i.e., to its left lie the 25% instances with lowest degree of dynamism (or urgency). The right 

side of the box represents the third quartile  L, i.e., to its left lie the 75% instances with lowest 

degree of dynamism (or urgency). Therefore, the boxes cover, for each case, the degree of dyna-

mism (or urgency) of 50% of the instances. The median of the degree of dynamism (or urgency) 

of each dynamic dataset is marked by a vertical line within the box and the lower (,,) and upper 

(m,) limits are delimited by the vertical line segments outside the boxes, whose values can be 

calculated by: 

 ,, =  � − 1.5 ⋅ o p, (15) 

 m, =  L + 1.5 ⋅ o p, (16) 

with the interquartile range given by: 

 o p =  L −  �. (17) 

 The diamonds indicate outliers, i.e., values not contained in the interval  ',,, m,*. 

 

 
Figure 4. Box plot of the degree of dynamism (left) and urgency (right) for each generated dynamic dataset 
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All generated dynamic datasets have medians of the degree of dynamism of at around 0.2 or 

less and a high concentration of instances with degree of dynamism of less than 0.3. It is worth 

noting that the greater the dynamism, higher is the number of optimization calls. Therefore, 

dynamic datasets with a concentration of low degree of dynamism can bene6it algorithms that 

return good results at the cost of a long computation time. 

 Another point to be highlighted is the scarcity of instances with dynamism between 0.45 and 

0.6. Van Lon et	al. (2016) claim that this range of dynamism values occurs in scenarios gener-

ated by homogeneous Poisson distributions. Bearing in mind that the arrival of travel requests 

in real world DARP systems happens in a way that resembles a homogeneous Poisson distribu-

tion (Schilde et	al., 2011), the lack of instances with these dynamism values hinders the analysis 

of realistic scenarios. 

 The normalized average urgency boxplot in Figure 4 shows a diversity of distributions. Li 

and Lim (2003), despite having a good coverage of urgency spectrum, show an accumulation of 

low urgency values, which over evaluate algorithms that value short-term results. 

4.4. CorrelaAon between lower limits of pickup Ame windows and requests arrival Ames 

By the description of dynamism brie6ly presented in Section 4.1, one can note that the interar-

rival times between requests are the main factors determining the degree of dynamism of an 

instance. Therefore, a dynamic dataset will have instances whose degrees of dynamism are dif-

ferent from each other, if the arrival times distribution is different between instances (Van Lon 

et	al., 2016). 

  However, in Section 3, most of the dynamization methods do not allow the diversi6ication of 

time intervals between instances. The only exception being Pankratz (2005) (Section 3.3), who 

varies the value of 2 ensuring that one static instance will generate a couple of dynamic in-

stances with different reaction times. Nevertheless, Pankratz (2005) still failed to achieve a very 

wide range of dynamism (Figures 3 and 4). 

 Among the dynamization methods presented in Section 3, it is common to use pickup time 

window limits to obtain arrival times, which makes the time windows distribution affect di-

rectly the arrival times distribution. Therefore, if the distribution of time window limits has an 

accumulation of values, there is a possibility that this accumulation will be passed on to the 

arrival times distribution. 

  Figures 5 and 6 show the histogram and cumulative frequency of lower and upper limits of 

pickup time windows for the sets of static instances used in this work, all normalized by their 

respective planning horizon.  

 

  
Figure 5. Histogram of the lower limits of the pickup time windows for each set of static instances. Values normalized 

            by the planning horizon 
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Figure 6. Histogram of the upper limits of the pickup time windows for each set of static instances. Values normalized 

            by the planning horizon. 

 

 All the histograms in Figure 5 show an aggregation at the beginning of the planning horizon. 

The accumulated frequency shows that all static instances have more than 75% of their lower 

limit of pickup time windows before the middle of the planning horizon. 

 In Figure 6 it is shown that 50% of the requests by Ropke et	al.	(2007) and Cordeau and 

Laporte (2003) have their upper limit delivery time windows at the end of the planning horizon, 

and also have a range (between 0.4 and 0.9) where there is no occurrence. Since some dynami-

zation methods use the upper limit of delivery time window to establish the request arrival 

time, this “dead zone” can dif6icult the creation of requests with arrival time around this zone. 

 Table 1 shows correlation values between arrival times and pickup time windows lower lim-

its. The highest correlations are perceived for the dynamization methods proposed by Berbeglia 

et	al. (2012) and Pureza and Laporte (2008). The two other methods have a slightly lower cor-

relation, which can be explained by the use of random variables taken from an uniform distri-

bution in the dynamization method by Fabri and Recht (2006) and by the reaction time param-

eter variation applied by Pankratz (2005). 

 

Table 1 – Correlation values between the normalized arrival times and the normalized lower limits of the pickup time 

windows 

Set of static instances Dynamization method q 

Cordeau and Laporte (2003) 

 

Berbeglia et al. (2012) 

Fabri and Recht (2006) 

Pankratz (2005) 

Pureza and Laporte (2008) 

0.91 

0.79 

0.74 

0.86 

Li and Lim (2003) Berbeglia et al. (2012) 

Fabri and Recht (2006) 

Pankratz (2005) 

Pureza and Laporte (2008) 

0.99 

0.78 

0.82 

0.93 

Ropke et al. (2007) Berbeglia et al. (2012) 

Fabri and Recht (2006) 

Pankratz (2005) 

Pureza and Laporte (2008) 

0.97 

0.81 

0.78 

0.89 

 

4.5. Presence of staAc requests 

The analysis of arrival times shows that the Fabri and Recht (2006) and the Pureza and Laporte 

(2008) dynamization methods generate many requests with arrival time equal to zero, which, 

by de6inition, are considered static requests. Table 2 shows the percentage of requests with ar-

rival time equal to zero for all the generated dynamic instances. 

 



Eccel, R.A.L.; Carlson, R.C. Volume 28 | Número 4 | 2020  

TRANSPORTES | ISSN: 2237-1346 114 

Table 2 – Percentage of requests with arrival time equal to zero 

Set of static instances Dynamization method Total 

(%) 

Average 

(%) 

Std.  

Dev. 

(%) 

Cordeau and Laporte (2003) 

 

Berbeglia et al. (2012) 

Fabri and Recht (2006) 

Pankratz (2005) 

Pureza and Laporte (2008) 

7.3 

50.4 

0.0 

50.0 

7.2 

50.4 

0.0 

50.0 

1.8 

1.0 

0.0 

0.0 

Li and Lim (2003) Berbeglia et al. (2012) 

Fabri and Recht (2006) 

Pankratz (2005) 

Pureza and Laporte (2008) 

3.7 

19.9 

0.0 

19.4 

8.5 

23.6 

0.3 

48.5 

11.2 

27.6 

0.1 

20.5 

Ropke et al. (2007) Berbeglia et al. (2012) 

Fabri and Recht (2006) 

Pankratz (2005) 

Pureza and Laporte (2008) 

15.8 

50.7 

0.0 

50.2 

17.2 

50.9 

0.0 

50.2 

8.0 

1.8 

0.0 

0.8 

 

 

 The percentage of static requests is an important feature of instances. They represent an in-

itial condition of the system. Therefore, it is a good practice to have a ranging value of static 

requests percentages in benchmark datasets for testing different initial conditions. 

 Table 2 shows that most of the generated dynamic datasets fail to cover a good range of static 

instances percentage. The only two exception being Li and Lim (2003) by Fabri and Recht 

(2006) and by Pureza and Laporte (2008). The method proposed by Pankratz (2005) does not 

generate any static instance. However, in his work some additional parameters are used to ad-

dress this condition, if needed. It is believed that this side effect is also caused because of the 

use of pickup and delivery time windows limits combined with the use of static instances that 

have an accumulated distribution of these values, especially at the beginning of the planning 

horizon. Therefore, when using dynamization methods, care must be taken that they do not 

generate too many static requests, which can hinder the analysis of algorithms made to deal 

with dynamic requests. 

5.  CONCLUDING REMARKS 

This article succinctly presented sets of benchmark instances for the DDARP and DPDPTW and 

the methods used for generating them from static instances. We performed the analysis using 

degree of dynamism and urgency metrics proposed by Van Lon et	al. (2016) for a series of com-

binations of static benchmark datasets and dynamization methods presented. The number of 

static requests and the correlation between lower limits of the pickup time window and the 

requests arrival times were also analyzed. It was observed that all the dynamization methods 

generate dynamic benchmarks with little variability in relation to the degree of dynamism and 

urgency values for the used static sets. This is mainly caused by the fact that the dynamization 

methods work with a low variability of parameters and too much dependency on the pickup 

time window limits. This is an unwanted feature for dynamization methods. 

  Benchmark instances and dynamization methods with a wide variety of characteristics help 

to test different aspects of algorithms and can favor the development of more 6lexible methods, 

which can be used in real situations with less risk of failure (Uchoa et	al., 2017).  

 It is hoped that this paper serves as a basis for other researchers in the 6ield of dynamic ve-

hicle routing who are interested in studying the behavior of solution algorithms for DDARP and 

DDPDTW through computational experiments. It should be noted that all the data from the sets 
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of benchmark instances that are characterized and analyzed in this paper are freely available 

for consultation and use, as well as all the source code used for their analysis (Eccel, 2020). 

 For future work, we suggest an analysis of the spatial factors of the instances, especially the 

distribution of the pickup and delivery locations. The investigation of new methods for convert-

ing static instances into dynamic instances is recommended if more variability of the degree of 

dynamism and urgency is required.  
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