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 ABSTRACT  

Runway surface condi3ons are fundamental to ensure safety during landing and takeoff 

opera3ons of aircra7s. In this manner, airport operators are required to monitor the 

coefficient of fric3on and macrotexture of runways to maintain its safety and plan 

maintenance and rehabilita3on strategies when appropriate, since both these parame-

ters get deteriorated with 3me. Thus, to assist aerodrome operators and regulatory 

agencies in the decision-making process for conserva3on and monitoring of airfield 

pavements, this study aimed to develop a predic3on model for runway fric3on using 

Ar3ficial Neural Network. Our results were sa3sfactory and may contribute to the  

decision-making process in the context of the Airport Pavement Management System.  

 

RESUMO   

As condições superficiais de uma pista de pouso e decolagem (PPD) são fundamentais 

para a garan3a da segurança das operações das aeronaves que a u3lizam. Nesse sen3do, 

operadores de aeródromos devem manter atenção especial ao coeficiente de atrito e à 

macrotextura, para que possam promover uma PPD segura, planejar estratégias de ma-

nutenção e reabilitação em momentos oportunos, à medida que esses parâmetros se 

deterioram. Dessa forma, com o intuito de auxiliar operadores de aeródromo e a agên-

cia reguladora na tomada de decisão acerca do monitoramento e dos serviços de con-

servação de pavimentos aeroportuários, este trabalho tem o obje3vo de desenvolver 

um modelo de previsão do coeficiente de atrito medido numa PPD, por meio de Redes 

Neurais Ar3ficiais. Os resultados apresentaram-se sa3sfatórios e, assim, tem-se poten-

cial de aplicação do modelo para contribuir na tomada de decisão no contexto de um 

Sistema de Gerência de Pavimentos Aeroportuários. 
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1. INTRODUCTION 

The tire-pavement adherence – represented by the macrotexture and by the coef�icient of  
friction – are essential for the safety of the operations on the runways. They make it possible for 
the aircraft to slow down after landing as they allow the airplane tire to roll until it reaches the 
speed to takeoff (Fwa et	al., 1997) and also, they act in the draining of the water on the runway. 
Therefore, the importance of their monitoring in order to help making decisions regarding 
maintenance measures taken by the airport operators and the inspection of the National Civil 
Aviation Agency of Brazil (ANAC) are highlighted. 
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 In Brazil, ANAC (2019), establishes that the airport operators should keep the runway in con-
dition to operate safely in order to guarantee: (i) skid resistance, (ii) the directional control of 
the airplanes, and (iii) the integrity of the aeronautical equipment. Hence, among the aspects 
that must be monitored, the ones in evidence are the coef�icient of friction, the macrotexture, 
and the rubber accumulation from the airplane tires. So, the frequency for monitoring the pa-
rameters mentioned above is established according to the average number of daily landings. 
Consequently, the more landings, the more measurements should be made, and therefore, as 
these measurements are made, more data that composes the Pavement Management System 
(PMS) are generated, which is one of the main characteristics of a modern PMS for  
Haas et	al. (2015). 

 Nevertheless, according to Federal Aviation Administration (FAA) (2014), airport operators 
do not always make the best rational decisions regarding pavement maintenance and rehabili-
tation using an approach that allows them to evaluate alternative strategies and lead to an ef�i-
cient usage of the resources available. Many times, decisions are based on an immediate need 
or in the experience of past services, in a subjective way (Fwa et	al., 1997; Chen et	al., 2008). 

 It is fundamental for a PMS to have tools that are capable of foreseeing the surface conditions 
of the pavements with the objective of helping the airport operators and the regulatory agencies 
in decision making in order to guarantee the safety of the operations and the ef�iciency to allo-
cate resources. Thus, Arti�icial Neural Networks (ANN) can be useful for this purpose because 
they are able to detect nonlinear patterns in data bases. Moreover, the ANNs are tools that have 
been successfully used in various areas, including Transportation Engineering. 

 According to the aforementioned, this paper has the objective of developing a prediction 
model using Arti�icial Neural Networks, for the coef�icient of friction measured in a runway.  
The International Airport of Fortaleza, in the state of Ceará, Brazil, was used as the study case 
and for applying the model in focus. 

2. FACTORS INFLUENCING THE COEFFICIENT OF FRICTION 

The tire-pavement adherence is fundamental, besides other factors, for the landing or taking off 
to happen safely, and it is strongly affected by the quality of the contact area. Therefore, the 
presence of contaminants, such as water, is an important aspect to be taken into consideration. 
It is possible to reach a good tire-pavement interaction due to macrotexture and adequate  
draining, since a wet runway facilitates hydroplaning, or aquaplaning, a phenomenon in which 
there is the loss of traction, resulting in an inef�icient breaking, with the possibility of losing the  
directional control and causing accidents (Silva, 2008). 

 The microtexture is responsible for breaking the water �ilm that is present in the surface and 
consequently, for allowing the reestablishment of the tire-pavement contact. This parameter 
depends, basically, on the roughness or smoothness of the super�icial aggregates. So, it is  
desirable, according to Aps (2006), that the surface is composed of aggregates that are rough 
enough to break the water �ilm. In spite of this, ANAC (2019) does not require the microtexture 
of the runways be measured in the airports of Brazil. The reason for this may be substantiated 
in Bernucci et	al. (2008), when they af�irm that this parameter, despite being a very important 
characteristic to promote the tire-pavement contact, acts at low speed, of up to 40km/h. 

 The macrotexture is one of the main characteristics of the tire-pavement adherence, mostly 
for speeds higher than 50km/h, being one of the factors that predominantly interfere in friction 
(Bernucci et	 al., 2008). Due to the importance of macrotexture in the maintenance of the  
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tire-pavement adherence, the ANAC (2016) determines that the macrotexture depth on the 
pavement must be of at least 0,60mm and measured by the volumetric sand patch test.  
The measurements are one-off events that take place three meters away from the runway cen-
terline, and alternately every 100 meters, to the left and to the right of the centerline  
(ANAC, 2019). 

 Like the macrotexture, the friction forces between the tire and the pavement are also im-
portant for the safety of the airplane, especially in smaller runways, in which the extension avail-
able is close to the necessary amount for braking. The friction forces form the main way to stop 
the airplane after the takeoff or the landing is interrupted because the engine reversal is con-
sidered a mere complement, although it may contribute signi�icantly considering low friction 
runways (Rodrigues Filho, 2006). 

 Although macrotexture is an important factor for airplanes to brake, for it helps draining the 
water from the surface of the pavement, this feature was not used in this paper for two main 
reasons: (i) its measurements are isolated, whereas the measurements of the coef�icient of fric-
tion are done continuously; and (ii) the initial results have shown a weak correlation between 
the values of macrotexture measured using the sand patch method and the values of the coef�i-
cient of friction using the Grip Tester, according to what has been observed by Bezerra Filho and 
Oliveira (2013) and Ramos et	al. (2015). 

 As for the ways of measuring the coef�icient of friction, ANAC (2019) establishes a classi�ica-
tion of equipment, speeds, water depth and measurement frequencies that aerodrome opera-
tors can adopt.  The results are reported in 100-meter segments and the limit values, according 
to the type of equipment and measurement speed.  In this paper, a Grip Tester equipment was 
used, with a speed of 65 km/h, whose maintenance planning level of the coef�icient of friction 
value is 0.53 and the minimum level of the coef�icient of friction value is 0.43. 

 Besides this, the measurements of the coef�icient of friction always take place within a 1,0mm 
water level layer in order to simulate a situation of wet pavement, a condition in which the fric-
tion between the airplane tire and the pavement is reduced. Regarding the frequency of the 
measurements, it is established according to the average of landing of �ixed-wing aircrafts with 
reaction engines per day, on the predominant threshold, during the past year. This way, the fre-
quency of the measurements of the coef�icient of friction, de�ined by the ANAC (2019), may vary 
from 15 to 360 days. 

 Several characteristics and factors in�luence the coef�icient of friction on a pavement, namely: 
the types of surface layer, texture, traf�ic, time, the presence of contaminants, the weather con-
ditions, among others. Regarding the type of pavement, Aps (2006) compared the coef�icients 
of friction measured in different kinds of asphalt surfaces: a draining one (Porous Friction 
Course – PFC), a cold premix asphalt, and an asphaltic concrete. It has been noticed that, in  
general, the PFC has shown the best results of coef�icient of friction, and the asphaltic concrete, 
the worst results. 

 McDanniel et	al. (2010) also investigated the performance of the coef�icient of friction in 
some parts of North American roads, which were composed of three types of surfaces: the con-
ventional asphalt concrete, Stone Matrix Asphalt (SMA), and PFC. The monitoring began when 
the runway started operating and continued for �ive years. It has been noticed that, after the 
action of traf�ic, the asphalt concrete section has shown the lowest friction values among the 
surfaces being investigated. 
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 Regarding the in�luence of traf�ic and time on pavements, Skerrit (1993) af�irms that friction 
on new pavements noticeably comes from macrotexture, since the aggregates are still covered 
by an asphalt binder coating. Nevertheless, as vehicles move, this coating disappears and the 
aggregates become exposed to polishing. Occasionally, all the aggregates on the surface abrade 
until they reach a condition of balance. This usually happens after the traf�ic of one to �ive mil-
lion passenger vehicles, or after a period of two years. 

 Therefore, the polishing of the aggregates is directly associated to traf�ic intensity and com-
mercial vehicles contribute the most in this process. However, the geometry of the pavement 
also represents another factor that contributes for the polishing to happen. Consequently,  
regions with a high number of vehicles demand more attention concerning friction (Chelliah et	
al., 2002). 

 Another important factor that also in�luences the friction available on runways is the amount 
of rubber accumulated on the surface of the pavement originated from the airplane tires during 
operations, mainly landings. This rubber accumulated on the touchdown zone of the runways 
can be very extensive and �ill all the texture of the pavement surface, leading to the loss of  
braking capacity and the directional control when the runway is wet. Hence, the main reason of  
attention to the accumulation of rubber is the safety of the landing and takeoff operations on 
the runway (Chen et	al., 2008). 

 Chen et	al. (2008) studied the effect of rubber accumulation on a runway of the International 
Airport of Kaohsiung. According to the authors, after the initial 200m, from the threshold end, 
it is already possible to observe the presence of rubber deposits. However, it is between the 
500m and 1,000m stretches that the biggest rubber accumulation can be noticed and, as a re-
sult, the lowest friction coef�icient values. Besides this, Chen et	al. (2008) also observe that, in 
general, each landing contributes for the increase of 0,05 µm in the thickness of the rubber de-
posited. This accumulated rubber goes through a compaction process as a result of the heat and 
weight of the airplanes during their landing, thus becoming a layer of rubber that covers the 
runway surface, impairing the contact between the tire and the pavement reducing the  
coef�icient of friction. 

 Finally, the pavement surfaces also suffer the in�luence of the weather conditions. Regarding 
friction, there are different patterns of seasonal variations on the skidding resistance levels. 
This variation is more noticeable during the summer months, according to Masad et	al. (2009), 
because these are times of higher temperatures when the lower levels of skidding resistance 
are observed, mainly due to the accumulation of a large quantity of small particles and detritus. 
Consequently, there is a faster polishing of the surface of the pavement and for this reason, the 
skidding resistance is reduced. Chelliah et	al. (2002) observed an alteration of approximately 
30% of the friction between a minimum in summer and a peak during winter. 

 Anupam et	al. (2013) studied the in�luence of temperature of the pavements, of the air and 
of the air inside the tire, on the friction, in three different types of asphaltic pavements: draining 
pavement, SMA and ultra-thin surface. The results have shown that friction is inversely propor-
tional to temperature, no matter the type of pavement surface. 

 Several studies have been developed with the objective of estimating the pavement surface 
conditions. These models use variables that in�luence them or are related to these  
parameters, such as data related to the type of pavement, to the aggregates, to the road geome-
try, to traf�ic and to the weather conditions (Cerezo et	 al., 2012; Santos et	 al., 2014;  
Beckley, 2016; Oliveira, 2017; Susanna et	 al., 2017; Hossain et	 al., 2019; Yao et	 al., 2019).  
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In these models, several techniques were employed to predict, from multiple linear regression, 
nonlinear regression to Arti�icial Neural Networks. This last technique outstands the others and 
will be approached in this article due to its ef�icient capacity of data processing and patterns 
detection in big amounts of data. 

3. ARTIFICIAL NEURAL NETWORKS 

ANN are techniques inspired by the functioning of the human brain. For this reason, distributed 
parallel systems composed by simple processing units are used, known as nodes or neurons, 
that calculate certain mathematical functions, that are usually nonlinear. These units are dis-
posed in one or more layers and are interconnected by a signi�icant amount of connections  
(Ribeiro, 2013). 

 A neuron, according to Haykin (2009), is an information processing unit that is fundamental 
for the operation of a neural network. Multilayer Perceptrons (MLP) networks are some of the 
most employed and best-known models. This type of network consists of a set of sensorial units 
that form an input layer, one or more hidden – or intermediate – layers and an output layer.  
The input signals are propagated layer after layer through the network in a positive  
direction, that is, from input to output, as illustrated in Figure 1 (Bocanegra, 2002). 

 

 
Figure 1. Process of Positive Propagation (input-output) 

 

 The neuron, according to Haykin (2009), can be mathematically represented by equations 1, 
2 and 3: 

 zj = ∑wij × xi (1) 
 vj = zj + bj (2) 
 y(x)	=	f(vj) (3) 
where: zj	is the addition of the outputs, xi are the input signals, wij are the respective synaptic 
weights of neuron j, y(x) is the signal for the output neuron, f(.) is a nonlinear activation function 
and bk is bias. 

 In order to go from one layer to the next, a set of neurons calculates the sum of the weights 
of the previous layer and the result comes out from a nonlinear function. In previous decades, 
the neural networks used to use the sigmoid activation functions or the hyperbolic tangent  
functions. However, nowadays, one of the most popular nonlinear activation functions is the 
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recti�ied linear function (ReLU), because, in general, ReLU learns faster in networks with many 
layers (Lecun et	al., 2015). 

 After propagating the input signals in a positive direction the algorithm analyzes the errors 
in the output and veri�ies how much each neuron, in the previous hidden layer, contributed to 
the error in the output and so on and so forth, until the algorithm reaches the input layer. Géron 
(2017) synthesizes this process the following way: for every training example, the backpropa-
gation algorithm makes a prediction, checks the error and passes by every layer in the opposite 
direction to analyze the contribution of the error of each connection and, �inally, makes small 
adjustments on the weights of the connection to minimize the error, Figure 2. 

 

 
Figure 2. Backpropagation process (from the output to the input) 

 

 The backpropagation algorithm can be summarized by the following steps: (i) �irst, a vector 
with input data is applied in the network and propagated through the network in order to �ind 
the activation of all hidden and output neurons; (ii) next, the errors that were obtained between 
the desired and estimated values are evaluated; (iii) so, the error is propagated in the inverse 
direction to analyze the error in each neuron; (iv) and last, the weights are adjusted by the deri-
vates of the neuron activation functions (Bishop, 2006). 

 In this paper, an Arti�icial Neural Network of Multilayer Perceptron type with the use of the 
backpropagation algorithm was used. 

3.1. ANN applica�on in the Management of Pavements 

Flintsch et	al. (1996) elaborated a model using ANN to help in the choice of road sections that 
were to go under maintenance, and reduce the subjectivity in this process. For this, data related 
to the pavement condition, the location, and the costs of maintenance services were used.  
The authors obtained as outcome a model capable to correctly predict 76% of the output for 
the testing examples. 

 Regarding the Airport Pavement Management System, Fwa et	al. (1997) developed an ANN 
model to de�ine the necessity or not of maintenance services on runways and to decide if a  
rubber removal operation should be done. Concerning the results, the model reached a success 
rate of 90.0% during the testing phase. As the Fwa et	al. (1997) model, the model developed in 
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this article tried to develop a tool using ANN to estimate the coef�icient of friction, as of envi-
ronmental variables, number of operations, rubber removal operations, among others, thus 
contributing to decision making process related to the runway maintenance. 

 Two models of ANN were created by Bosurgi and Tri�irò (2005) to collaborate in decision 
making regarding the choice of maintenance services and to determine the most economical 
solution with the highest coef�icient of friction. The results of the model for predicting the  
coef�icient of friction presented a Mean Squared Error (MSE) of 0.072 in the testing phase.  
Concerning the second model, which was developed to estimate the number of accidents on the 
selected roads, it reached MSE of 0.063 in the testing phase. 

 Ribeiro et	al. (2018) presented a low-cost methodology for geotechnical mapping applied to 
paving with the use of ANN. The model developed by the authors showed a precision of 0.98 
hence, being a potential tool to be used in infrastructure projects. 

 Yang et	al. (2018) built a prediction model using ANN for the coef�icient of friction based on 
data about the pavement texture, and as a consequence, better understand the relation between 
these two parameters. Yao et	al. (2019), in their turn, elaborated models to predict the deterio-
ration of the pavement conditions, among which the coef�icient of friction is highlighted and the 
Coef�icient of Determination (R2) was of 86.1% during the testing phase. 

 An alternative model for retroanalysis of Resilient Modulus (RM) of pavements, an important 
mechanical property of the paving material, was developed by Celeste and Oliveira (2019).  
The results of this module reached a R² of 99.9% among the RM observed and estimated values. 

4.  RESEARCH METHOD 

The methodology used in this paper can be divided into �ive stages. The �irst stage regards the 
choice of the airport to be used; in the second stage, data was collected; in the third stage this 
data was treated; in the fourth stage a model of Arti�icial Neural Network was trained; and last, 
in the �ifth stage the results of the model, Coef�icient of Determination (R2), and errors were 
analyzed. 

 When choosing the airport, the International Airport of Fortaleza was chosen with a 2,545m 
runway of asphalt concrete and with no grooving. This was the airport that had the biggest 
amount of data available for the authors during the period from 2015 to 2019. 

 The following features were collected: coef�icient of friction, rubber removal, number of op-
erations (landings and takeoffs), relative humidity, and the age of the runway. The data related 
to the coef�icient of friction were obtained from technical reports provided by the Superintend-
ency of Airport Infrastructure from the National Civil Aviation Agency (SIA/ANAC). 

 The data related to the coef�icient of friction was taken from 19 technical reports measured 
from 21/02/2015 to 14/08/2019. The measurements of the coef�icient of friction were made 
using a Grip Tester, three meters away from the centerline at 65 km/h, and the acceleration 
distance was 100 meters. It is important to point out that the measurements of the coef�icient 
of friction are made on a water �ilm of 1.0 mm. Besides this, some pieces of information related 
to the maintenance of the pavement conditions were also included in the aforementioned re-
ports, such as the date of the last rubber removal on the runway. It should be pointed out that 
the measurements of the coef�icient of friction were discriminated every 100 m of segment 
measured. In general, 2,300 m to 2,400 m of the runway is measured, considering the length of 
the International Airport of Fortaleza. This way, about 46 values of coef�icient of friction per 
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measurement were found, considering a report of 2,300 m and both the right and left sides of 
the runway. 

 Regarding the climatic data, these were acquired on the website of the climatological data 
base of the Institute of Air Space Control (ICEA).  The information collected at ICEA refers to the 
monthly hour average.  The reports of the coef�icient of friction measurement also contain in-
formation on the relative humidity of the air at the time the measurements were taken. 

 Regarding the age of the pavement surface of the runway, on its turn, it was gotten from  

the Brazilian Airport Infrastructure Company (INFRAERO). 

 The information concerning landings and takeoffs came from the SIA/ANAC. The number of 
operations was calculated by the amount of operations, considering all the landings and takeoffs 
that happened in between the procedures of rubber removal and the moment when the coef�i-
cient of friction was measured. Since more than 98% of the operations in the International Air-
port of Fortaleza take place on the predominant threshold, considering the average of the period 
from 2015 to 2018, the option was for considering all the operations that occurred on this 
threshold. 

 Categoric features were also used to indicate (i) the side of the runway where the coef�icient 
of friction was measured and (ii) proceeding or not of the rubber removal process. For this mat-
ter, 0 indicates no rubber removal was done since the last measurement and 1, indicates the 
opposite. It is observed that going through this procedure was considered only for the �irst one-
third of the runway, a section where there is predominance of landings and takeoffs; regarding 
the side on which the coef�icient of friction was measured, 0 was determined for the left side 
and 1, for the right side. 

 Next, the data was normalized, that is, each value was subtracted from its average and then, 
divided by their standard deviation. When applying this method, the features present average 
0 and variance 1. This is a common procedure for an ANN; otherwise, it may present unsatis-
factory results, mainly if the individual features bear no similarity to the standard data that is 
normally distributed.  So, it points out all resources are centralized around 0 and have their 
variation in the same order or are between [0, 1] or [-1, 1]. 

 For training the model, which was written in the Python programming language, the  
Scikit-Learn library were used to test several parameters simultaneously. Among the parame-
ters that were tested, the ones highlighted were: ANN architectures with up to two hidden  
layers; of 1 to 100 neurons; activation functions: sigmoid, hyperbolic tangent and recti�ied  
linear; alpha, a regularization term to prevent excessive adjustments, from 0.001 to 1; number 
of iterations between 200 and 1.0000; two ways of optimizing weights, using the Stochastic  
Gradient Descent and the L-BFGS, an optimizer of the quasi-Newton family. 

 As for the data set, two proportions were tested: 80% / 20% and 90% / 10%; the �irst portion 
of the proportion relating to training and the second, to the test. The data were, then, randomly 
divided without repetition. It was noticed that the division 90%/10% was the one that showed 
the most relevant results. Finally, the model that was analyzed by its success rate, measured by 
the Coef�icient of Determination (R2) among the observed and estimated values. In order to 
measure the errors, we used the Mean Squared Error (MSE) and the Mean Absolute Error 
(MAE). 
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5.  RESULTS AND DISCUSSION 

The 19 technical reports on measurements of the coef�icient of friction resulted in 894 obser-
vations, from which 804 were used in the training phase and 90 in the testing phase.  
The ANN architecture that reached the best results is formed by two hidden layers with 94 and 
73 neurons; Recti�ied Linear Unit (ReLU); L-BFGS weight optimizer; alpha equal to 0.1; and a 
maximum of 600 iterations. 

 The input features adopted were (i) distance of measurement; (ii) side of measurement; (iii) 
rubber removal; (iv) age of the pavement surface; (v) relative humidity; and (vi) number of  
operations between removals. In relation to the output feature of the model, this is an estimate 
of the coef�icient of friction measured by the equipment Grip Tester at the speed of 65km/h, 
three meters away from the runway centerline. 

 The success rates, Coef�icient of Determination (R²), and the errors measured by the Mean 
Squared Error (MSE) and the Mean Absolute Error (MAE) are shown on Table 1. 

 

Table 1 – Model Results 

Phase Coefficient of Determination MSE MAE 

Training 77.63% 0.0018 0.0327 

Test 77.51% 0.0021 0.0364 

 

 The input variable “distance of measurement” was the one that in�luenced the model the 
most. There are sections on the runway that are more used than others, such as the touchdown 
zone of the airplanes during the landing operations, where there is more rubber accumulation 
due to the fact that the tire-pavement contact happens more intensely in this area. The results 
of the Coef�icient of Determination (R²) were similar on the training and testing phases (Table 
1). Regarding the errors, both phases have also shown similar MSE and MAE, although the  
training phase slightly superior to the testing phase. Figure 3 shows the scatter plot between 
the coef�icient of friction observed and the coef�icient of friction estimated by the model for the 
training and testing phases. 

 

 
Figure 3. Scatter plots of the coefficient of friction in the training and testing phases 



Quariguasi, J.B.F.; et al. Volume 29 | Número 2 | 2021  

TRANSPORTES | ISSN: 2237-1346 10 

Error histogram (training phase) Error histogram (testing phase) 

Error (observed - estimated) Error (observed - estimated) 

 Although the graphs in Figure 3 show signi�icant dispersion in both phases, it should be  
emphasized that the coef�icients of friction show the same tendency to dispose the values close 
to the diagonal, that is, to the trendline. A summary of the results of the testing phase is  
presented in Table 2. Therefore, the importance of analyzing the errors histogram, shown in 
Figure 4, is highlighted, to better check these results. 

 

Table 2 – Summary of the accuracy score of the testing phase 

Estimated Coefficient of Friction  
Observed Coefficient of Friction  

0.5 0.6 0.7 0.8 0.9 1 

0.5 2 0 0 0 0 0 

0.6 4 13 9 0 0 0 

0.7 0 9 25 4 0 0 

0.8 0 0 2 12 5 0 

0.9 0 0 0 4 1 0 

1 0 0 0 0 0 0 

  

    

 
 

Figure 4. Error histograms in the training and testing phases 

 

 It is noticeable that, in the training phase, most of the errors are in the gap between -0.05 
and +0.05, mainly between -0.025 and 0.0. Moreover, the average of errors in the training phase 
is 0.0 and the standard deviation is of 0.04. We found that 50.87% of the results had values 
below 0, that is, the model estimated the coef�icient of friction above the observed rates. This 
situation, under the perspective of operational safety, would be the most unwanted, since it 
could transmit to the National Civil Aviation Agency – ANAC and to the airport operator (the 
decision maker), who is responsible for the runway maintenance, a coef�icient of friction supe-
rior to the real one. 

 Regarding the testing phase, the errors are mainly between -0.05 and +0.025, notably on the 
gap from 0.0 to +0.025. Moreover, 52.22% of errors are superior to zero, indicating that, in  
general, the estimated coef�icients of friction are lower than the ones observed and, conse-
quently, they do not present a risky scenario to the safety of the landing and takeoff operations, 
since the model estimates more adverse scenarios than the ones observed, and hence, stimu-
lates the airport operator to measure of the coef�icient of friction on the runway. 
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 It should be emphasized that estimates of the coef�icient of friction lower or equal to 0.60 
must be closely observed because, according to the scatter plots in Figure 3 and the errors his-
tograms in Figure 4, such estimates may re�lect values close to 0.50. So, in order to guarantee 
the safety in the operations on the runway, when the model estimates results close to 0.60, it is 
suggested the airport operator measures the coef�icient of friction on site, since the ANAC 
(2019) establishes both the minimum and the maintenance values are, respectively, 0.43 and 
0.53 for measurements of the coef�icient of friction using the equipment Grip tester at 65km/h. 

 This tool might help the airport operator to have better a control of the runway condition of 
friction and thus, plan on site measurements in more appropriate moments, as well as indicate 
maintenance strategies, obeying the frequency established by the National Civil Aviation 
Agency (ANAC, 2019). That being so, one hopes to have contributed for the increase and  
guarantee of the safety in the landing and takeoff operations. 

6. CONCLUSIONS 

This paper developed a model to estimate the coef�icient of friction measured on the runway of 
the International Airport of Fortaleza. The results present a feasible model with a coef�icient of 
determination of 77,5% to implement and monitor the conditions of operational safety. 

 The model may contribute to the airport operator when making decisions related to making 
measurements of the coef�icient of friction on site or taking measures of maintenance and re-
habilitation, reducing the subjectivity of these procedures. Moreover, the model proposed may 
monitor the conditions of friction on the runway by the National Civil Aviation Agency. 

 Among the limitations inherent to this paper, it can be mentioned that it was developed using 
data exclusively from the International Airport of Fortaleza and therefore, it might not be ade-
quate for other airports. The prediction model estimates the coef�icient of friction measured 
with the equipment Grip tester at 65km/h, 3m away from the runway centerline, so, situations 
out of this scope may lead to errors. Furthermore, scenarios that present features that are either 
too low or that exceed the values used for training by far, also may lead to errors. 

 Finally, it is important to clarify that the measurements that take place on the runways cannot 
be abandoned because models are managerial, but measurements are veri�ications in	loco, that 
is to say, they are real measures. Nevertheless, it is expected the model developed in this  
research may offer a helping tool for an Airport Pavement Management System with the intent 
to guarantee the safety of the landing and takeoff operations in the Brazilian airports. 
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